1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
(* SPDX-License-Identifier: AGPL-3.0-or-later *)
(* Copyright © 2021-2024 OCamlPro *)
(* Written by the Owi programmers *)
[@@@ocaml.warning "-32-33"]
open Types
open Binary
let use_ite_for_select = true
module Make (P : Interpret_intf.P) :
Interpret_intf.S
with type 'a choice := 'a P.Choice.t
and type module_to_run := P.Module_to_run.t
and type thread := P.thread
and type env := P.Env.t
and type State.stack := P.Value.t list
and type value = P.Value.t = struct
open P
open Value
open Choice
module Stack = Stack.Make [@inlined hint] (Value)
module I32 = struct
include I32
let ( < ) = lt
let ( <= ) = le
let ( > ) = gt
let ( >= ) = ge
let ( + ) = add
let ( - ) = sub
let ( * ) = mul
let ( / ) = div
let ( ~- ) x = const_i32 0l - x
let ( <> ) = ne
let ( = ) = eq
let eqz v = v = zero
let min_int = const_i32 Int32.min_int
end
module I64 = struct
include I64
let ( < ) = lt
let ( <= ) = le
let ( > ) = gt
let ( >= ) = ge
let ( + ) = add
let ( - ) = sub
let ( * ) = mul
let ( / ) = div
let ( ~- ) x = const_i64 0L - x
let ( <> ) = ne
let ( = ) = eq
let eqz v = v = zero
let min_int = const_i64 Int64.min_int
end
let page_size = const_i64 65_536L
let pop_choice stack =
let b, stack = Stack.pop_bool stack in
let* b = select b in
return (b, stack)
let ( let> ) v f =
let* v = select v in
f v
let const = const_i32
let consti i = const_i32 (Int32.of_int i)
let exec_iunop stack nn op =
match nn with
| S32 ->
let n, stack = Stack.pop_i32 stack in
let res =
let open I32 in
match op with Clz -> clz n | Ctz -> ctz n | Popcnt -> popcnt n
in
Stack.push_i32 stack res
| S64 ->
let n, stack = Stack.pop_i64 stack in
let res =
let open I64 in
match op with Clz -> clz n | Ctz -> ctz n | Popcnt -> popcnt n
in
Stack.push_i64 stack res
let exec_funop stack nn op =
match nn with
| S32 ->
let open F32 in
let f, stack = Stack.pop_f32 stack in
let res =
match op with
| Abs -> abs f
| Neg -> neg f
| Sqrt -> sqrt f
| Ceil -> ceil f
| Floor -> floor f
| Trunc -> trunc f
| Nearest -> nearest f
in
Stack.push_f32 stack res
| S64 ->
let open F64 in
let f, stack = Stack.pop_f64 stack in
let res =
match op with
| Abs -> abs f
| Neg -> neg f
| Sqrt -> sqrt f
| Ceil -> ceil f
| Floor -> floor f
| Trunc -> trunc f
| Nearest -> nearest f
in
Stack.push_f64 stack res
let exec_ibinop (stack : Stack.t) nn (op : ibinop) : Stack.t Choice.t =
match nn with
| S32 ->
let (n1, n2), stack = Stack.pop2_i32 stack in
let+ res =
let open I32 in
match op with
| Add -> Choice.return @@ add n1 n2
| Sub -> Choice.return @@ sub n1 n2
| Mul -> Choice.return @@ mul n1 n2
| Div s -> begin
let> cond = eqz n2 in
if cond then Choice.trap Integer_divide_by_zero
else
match s with
| S ->
let> overflow = Bool.and_ (eq n1 min_int) @@ eq n2 ~-(const 1l) in
if overflow then Choice.trap Integer_overflow
else Choice.return @@ div n1 n2
| U -> Choice.return @@ unsigned_div n1 n2
end
| Rem s -> begin
let> cond = eqz n2 in
if cond then Choice.trap Integer_divide_by_zero
else
match s with
| S -> Choice.return @@ rem n1 n2
| U -> Choice.return @@ unsigned_rem n1 n2
end
| And -> Choice.return @@ logand n1 n2
| Or -> Choice.return @@ logor n1 n2
| Xor -> Choice.return @@ logxor n1 n2
| Shl -> Choice.return @@ shl n1 n2
| Shr S -> Choice.return @@ shr_s n1 n2
| Shr U -> Choice.return @@ shr_u n1 n2
| Rotl -> Choice.return @@ rotl n1 n2
| Rotr -> Choice.return @@ rotr n1 n2
in
Stack.push_i32 stack res
| S64 ->
let (n1, n2), stack = Stack.pop2_i64 stack in
let+ res =
let open I64 in
match op with
| Add -> Choice.return @@ add n1 n2
| Sub -> Choice.return @@ sub n1 n2
| Mul -> Choice.return @@ mul n1 n2
| Div s -> begin
let> cond = eqz n2 in
if cond then Choice.trap Integer_divide_by_zero
else
match s with
| S ->
let> overflow =
Bool.and_ (eq n1 min_int)
@@ eq n2 (sub (const_i64 0L) (const_i64 1L))
in
if overflow then Choice.trap Integer_overflow
else Choice.return @@ div n1 n2
| U -> Choice.return @@ unsigned_div n1 n2
end
| Rem s -> begin
let> cond = eqz n2 in
if cond then Choice.trap Integer_divide_by_zero
else
match s with
| S -> Choice.return @@ rem n1 n2
| U -> Choice.return @@ unsigned_rem n1 n2
end
| And -> Choice.return @@ logand n1 n2
| Or -> Choice.return @@ logor n1 n2
| Xor -> Choice.return @@ logxor n1 n2
| Shl -> Choice.return @@ shl n1 n2
| Shr S -> Choice.return @@ shr_s n1 n2
| Shr U -> Choice.return @@ shr_u n1 n2
| Rotl -> Choice.return @@ rotl n1 n2
| Rotr -> Choice.return @@ rotr n1 n2
in
Stack.push_i64 stack res
let exec_fbinop stack nn (op : fbinop) =
match nn with
| S32 ->
let (f1, f2), stack = Stack.pop2_f32 stack in
Stack.push_f32 stack
(let open F32 in
match op with
| Add -> add f1 f2
| Sub -> sub f1 f2
| Mul -> mul f1 f2
| Div -> div f1 f2
| Min -> min f1 f2
| Max -> max f1 f2
| Copysign -> copy_sign f1 f2 )
| S64 ->
let (f1, f2), stack = Stack.pop2_f64 stack in
Stack.push_f64 stack
(let open F64 in
match op with
| Add -> add f1 f2
| Sub -> sub f1 f2
| Mul -> mul f1 f2
| Div -> div f1 f2
| Min -> min f1 f2
| Max -> max f1 f2
| Copysign -> copy_sign f1 f2 )
let exec_itestop stack nn op =
match nn with
| S32 ->
let n, stack = Stack.pop_i32 stack in
let res = match op with Eqz -> I32.eq_const n 0l in
Stack.push_bool stack res
| S64 ->
let n, stack = Stack.pop_i64 stack in
let res = match op with Eqz -> I64.eq_const n 0L in
Stack.push_bool stack res
let exec_irelop stack nn (op : irelop) =
match nn with
| S32 ->
let (n1, n2), stack = Stack.pop2_i32 stack in
let res =
let open I32 in
match op with
| Eq -> eq n1 n2
| Ne -> ne n1 n2
| Lt S -> lt n1 n2
| Lt U -> lt_u n1 n2
| Gt S -> gt n1 n2
| Gt U -> gt_u n1 n2
| Le S -> le n1 n2
| Le U -> le_u n1 n2
| Ge S -> ge n1 n2
| Ge U -> ge_u n1 n2
in
Stack.push_bool stack res
| S64 ->
let (n1, n2), stack = Stack.pop2_i64 stack in
let res =
let open I64 in
match op with
| Eq -> eq n1 n2
| Ne -> ne n1 n2
| Lt S -> lt n1 n2
| Lt U -> lt_u n1 n2
| Gt S -> gt n1 n2
| Gt U -> gt_u n1 n2
| Le S -> le n1 n2
| Le U -> le_u n1 n2
| Ge S -> ge n1 n2
| Ge U -> ge_u n1 n2
in
Stack.push_bool stack res
let exec_frelop stack nn (op : frelop) =
match nn with
| S32 ->
let (n1, n2), stack = Stack.pop2_f32 stack in
let res =
let open F32 in
match op with
| Eq -> eq n1 n2
| Ne -> ne n1 n2
| Lt -> lt n1 n2
| Gt -> gt n1 n2
| Le -> le n1 n2
| Ge -> ge n1 n2
in
Stack.push_bool stack res
| S64 ->
let (n1, n2), stack = Stack.pop2_f64 stack in
let res =
let open F64 in
match op with
| Eq -> eq n1 n2
| Ne -> ne n1 n2
| Lt -> lt n1 n2
| Gt -> gt n1 n2
| Le -> le n1 n2
| Ge -> ge n1 n2
in
Stack.push_bool stack res
let exec_itruncf stack nn nn' sx =
match (nn, nn') with
| S32, S32 ->
let f, stack = Stack.pop_f32 stack in
let res =
match sx with S -> I32.trunc_f32_s f | U -> I32.trunc_f32_u f
in
Stack.push_i32 stack res
| S32, S64 ->
let f, stack = Stack.pop_f64 stack in
let res =
match sx with S -> I32.trunc_f64_s f | U -> I32.trunc_f64_u f
in
Stack.push_i32 stack res
| S64, S32 ->
let f, stack = Stack.pop_f32 stack in
let res =
match sx with S -> I64.trunc_f32_s f | U -> I64.trunc_f32_u f
in
Stack.push_i64 stack res
| S64, S64 ->
let f, stack = Stack.pop_f64 stack in
let res =
match sx with S -> I64.trunc_f64_s f | U -> I64.trunc_f64_u f
in
Stack.push_i64 stack res
let exec_itruncsatf stack nn nn' sx =
match nn with
| S32 -> begin
match nn' with
| S32 ->
let n, stack = Stack.pop_f32 stack in
let n =
match sx with
| S -> I32.trunc_sat_f32_s n
| U -> I32.trunc_sat_f32_u n
in
Stack.push_i32 stack n
| S64 ->
let n, stack = Stack.pop_f64 stack in
let n =
match sx with
| S -> I32.trunc_sat_f64_s n
| U -> I32.trunc_sat_f64_u n
in
Stack.push_i32 stack n
end
| S64 -> begin
match nn' with
| S32 ->
let n, stack = Stack.pop_f32 stack in
let n =
match sx with
| S -> I64.trunc_sat_f32_s n
| U -> I64.trunc_sat_f32_u n
in
Stack.push_i64 stack n
| S64 ->
let n, stack = Stack.pop_f64 stack in
let n =
match sx with
| S -> I64.trunc_sat_f64_s n
| U -> I64.trunc_sat_f64_u n
in
Stack.push_i64 stack n
end
let exec_fconverti stack nn nn' sx =
let is_signed = match sx with S -> true | U -> false in
match nn with
| S32 -> (
let open F32 in
match nn' with
| S32 ->
let n, stack = Stack.pop_i32 stack in
let n = if is_signed then convert_i32_s n else convert_i32_u n in
Stack.push_f32 stack n
| S64 ->
let n, stack = Stack.pop_i64 stack in
let n = if is_signed then convert_i64_s n else convert_i64_u n in
Stack.push_f32 stack n )
| S64 -> (
let open F64 in
match nn' with
| S32 ->
let n, stack = Stack.pop_i32 stack in
let n = if is_signed then convert_i32_s n else convert_i32_u n in
Stack.push_f64 stack n
| S64 ->
let n, stack = Stack.pop_i64 stack in
let n = if is_signed then convert_i64_s n else convert_i64_u n in
Stack.push_f64 stack n )
let exec_ireinterpretf stack nn nn' =
match nn with
| S32 -> begin
match nn' with
| S32 ->
let n, stack = Stack.pop_f32 stack in
let n = I32.reinterpret_f32 n in
Stack.push_i32 stack n
| S64 ->
let n, stack = Stack.pop_f64 stack in
let n = I32.reinterpret_f32 (F32.demote_f64 n) in
Stack.push_i32 stack n
end
| S64 -> begin
match nn' with
| S32 ->
let n, stack = Stack.pop_f32 stack in
let n = I64.reinterpret_f64 (F64.promote_f32 n) in
Stack.push_i64 stack n
| S64 ->
let n, stack = Stack.pop_f64 stack in
let n = I64.reinterpret_f64 n in
Stack.push_i64 stack n
end
let exec_freinterpreti stack nn nn' =
match nn with
| S32 -> begin
match nn' with
| S32 ->
let n, stack = Stack.pop_i32 stack in
let n = F32.reinterpret_i32 n in
Stack.push_f32 stack n
| S64 ->
let n, stack = Stack.pop_i64 stack in
let n = F32.reinterpret_i32 (I64.to_int32 n) in
Stack.push_f32 stack n
end
| S64 -> begin
match nn' with
| S32 ->
let n, stack = Stack.pop_i32 stack in
let n = F64.reinterpret_i64 (I64.of_int32 n) in
Stack.push_f64 stack n
| S64 ->
let n, stack = Stack.pop_i64 stack in
let n = F64.reinterpret_i64 n in
Stack.push_f64 stack n
end
let init_local (_id, t) : Value.t =
match t with
| Num_type I32 -> I32 I32.zero
| Num_type I64 -> I64 I64.zero
| Num_type F32 -> F32 F32.zero
| Num_type F64 -> F64 F64.zero
| Ref_type (_null, rt) -> ref_null rt
(* TODO move to module Env *)
let mem_0 = 0
type extern_func = Extern_func.extern_func
let exec_extern_func env stack (f : extern_func) =
let pop_arg (type ty) stack (arg : ty Extern_func.telt) :
(ty * Stack.t) Choice.t =
match arg with
| I32 -> Choice.return @@ Stack.pop_i32 stack
| I64 -> Choice.return @@ Stack.pop_i64 stack
| F32 -> Choice.return @@ Stack.pop_f32 stack
| F64 -> Choice.return @@ Stack.pop_f64 stack
| Externref ety -> (
let v, stack = Stack.pop_as_ref stack in
match Ref.get_externref v ety with
| Ref_value v -> Choice.return @@ (v, stack)
| Type_mismatch -> Choice.trap Trap.Extern_call_arg_type_mismatch
| Null -> Choice.trap Trap.Extern_call_null_arg )
in
let rec split_args : type f r.
Stack.t -> (f, r) Extern_func.atype -> Stack.t * Stack.t =
fun stack ty ->
let[@local] split_one_arg args =
let elt, stack = Stack.pop stack in
let elts, stack = split_args stack args in
(elt :: elts, stack)
in
match ty with
| Mem args -> split_args stack args
| Arg (_, args) -> split_one_arg args
| UArg args -> split_args stack args
| NArg (_, _, args) -> split_one_arg args
| Res -> ([], stack)
in
let rec apply : type f r.
Stack.t -> (f, r) Extern_func.atype -> f -> r Choice.t =
fun stack ty f ->
match ty with
| Mem args ->
let* mem = Env.get_memory env mem_0 in
apply stack args (f mem)
| Arg (arg, args) ->
let* v, stack = pop_arg stack arg in
apply stack args (f v)
| UArg args -> apply stack args (f ())
| NArg (_, arg, args) ->
let* v, stack = pop_arg stack arg in
apply stack args (f v)
| Res -> Choice.return f
in
let (Extern_func.Extern_func (Func (atype, rtype), func)) = f in
let args, stack = split_args stack atype in
let* r = apply (List.rev args) atype func in
let push_val (type ty) (arg : ty Extern_func.telt) (v : ty) stack =
match arg with
| I32 -> Stack.push_i32 stack v
| I64 -> Stack.push_i64 stack v
| F32 -> Stack.push_f32 stack v
| F64 -> Stack.push_f64 stack v
| Externref ty -> Stack.push_as_externref stack ty v
in
let+ r in
match (rtype, r) with
| R0, () -> stack
| R1 t1, v1 -> push_val t1 v1 stack
| R2 (t1, t2), (v1, v2) -> push_val t1 v1 stack |> push_val t2 v2
| R3 (t1, t2, t3), (v1, v2, v3) ->
push_val t1 v1 stack |> push_val t2 v2 |> push_val t3 v3
| R4 (t1, t2, t3, t4), (v1, v2, v3, v4) ->
push_val t1 v1 stack |> push_val t2 v2 |> push_val t3 v3 |> push_val t4 v4
module State = struct
type stack = Stack.t
type value = Value.t
module Locals : sig
type t = value array
val of_list : value list -> t
val get : t -> int -> value
val set : t -> int -> value -> t
end = struct
type t = value array
let of_list = Array.of_list
let get t i = Array.unsafe_get t i
let set t i v =
let locals = Array.copy t in
Array.unsafe_set locals i v;
locals
end
type pc = binary instr list
type block =
{ branch : pc
; branch_rt : binary result_type
; continue : pc
; continue_rt : binary result_type
; stack : stack
; is_loop : bool
}
type block_stack = block list
type count =
{ name : string option
; mutable enter : int
; mutable instructions : int
; calls : (binary indice, count) Hashtbl.t
}
type exec_state =
{ return_state : exec_state option
; stack : stack
; locals : Locals.t
; pc : pc
; block_stack : block_stack
; func_rt : binary result_type
; env : Env.t
; count : count
; envs : Env.t Env_id.collection
}
let empty_exec_state ~locals ~env ~envs =
{ return_state = None
; stack = []
; locals = Locals.of_list locals
; pc = []
; block_stack = []
; func_rt = []
; env
; count =
{ name = None
; enter = 0
; instructions = 0
; calls = Hashtbl.create 512
}
; envs
}
let rec print_count ppf count =
let calls ppf tbl =
let l =
(* TODO: move this to Types.ml *)
List.sort
(fun
((Raw id1 : binary indice), _) ((Raw id2 : binary indice), _) ->
compare id1 id2 )
@@ List.of_seq @@ Hashtbl.to_seq tbl
in
match l with
| [] -> ()
| _ :: _ ->
Fmt.pf ppf "@ @[<v 2>calls@ %a@]"
(Fmt.list
~sep:(fun ppf () -> Fmt.pf ppf "@ ")
(fun ppf ((Raw id : binary indice), count) ->
let name ppf = function
| None -> ()
| Some name -> Fmt.pf ppf " %s" name
in
Fmt.pf ppf "@[<v 2>id %i%a@ %a@]" id name count.name
print_count count ) )
l
in
Fmt.pf ppf "@[<v>enter %i@ intrs %i%a@]" count.enter count.instructions
calls count.calls
let empty_count name =
{ name; enter = 0; instructions = 0; calls = Hashtbl.create 0 }
let count_instruction state =
state.count.instructions <- state.count.instructions + 1
let enter_function_count count func_name func =
let c =
match Hashtbl.find_opt count.calls func with
| None ->
let c = empty_count func_name in
Hashtbl.add count.calls func c;
c
| Some c -> c
in
c.enter <- c.enter + 1;
c
type instr_result =
| Return of value list
| Continue of exec_state
let return (state : exec_state) =
let args = Stack.keep state.stack (List.length state.func_rt) in
match state.return_state with
| None -> Return args
| Some state ->
let stack = args @ state.stack in
Continue { state with stack }
let branch (state : exec_state) n =
let block_stack = Stack.drop_n state.block_stack n in
match block_stack with
| [] -> Choice.return (return state)
| block :: block_stack_tl ->
let block_stack =
if block.is_loop then block_stack else block_stack_tl
in
let args = Stack.keep state.stack (List.length block.branch_rt) in
let stack = args @ block.stack in
Choice.return
(Continue { state with block_stack; pc = block.branch; stack })
let end_block (state : exec_state) =
match state.block_stack with
| [] -> Choice.return (return state)
| block :: block_stack ->
let args = Stack.keep state.stack (List.length block.continue_rt) in
let stack = args @ block.stack in
Choice.return
(Continue { state with block_stack; pc = block.continue; stack })
end
let exec_block (state : State.exec_state) ~is_loop
(bt : binary block_type option) expr =
let pt, rt =
match bt with
| None -> ([], [])
| Some (Bt_raw ((None | Some _), (pt, rt))) -> (List.map snd pt, rt)
in
let block : State.block =
let branch_rt, branch = if is_loop then (pt, expr) else (rt, state.pc) in
{ branch
; branch_rt
; continue = state.pc
; continue_rt = rt
; stack = Stack.drop_n state.stack (List.length pt)
; is_loop
}
in
Choice.return
(State.Continue
{ state with pc = expr; block_stack = block :: state.block_stack } )
let exec_func ~return ~id (state : State.exec_state) env
(func : binary Types.func) =
Log.debug1 "calling func : func %s@."
(Option.value func.id ~default:"anonymous");
let (Bt_raw ((None | Some _), (param_type, result_type))) = func.type_f in
let args, stack = Stack.pop_n state.stack (List.length param_type) in
let return_state =
if return then state.return_state else Some { state with stack }
in
let locals =
State.Locals.of_list @@ List.rev args @ List.map init_local func.locals
in
State.
{ stack = []
; locals
; pc = func.body
; block_stack = []
; func_rt = result_type
; return_state
; env
; envs = state.envs
; count = enter_function_count state.count func.id id
}
let exec_vfunc ~return (state : State.exec_state) (func : Func_intf.t) =
match func with
| WASM (id, func, env_id) ->
let env = Env_id.get env_id state.envs in
let id = Raw id in
Choice.return (State.Continue (exec_func ~return ~id state env func))
| Extern f ->
let f = Env.get_extern_func state.env f in
let+ stack = exec_extern_func state.env state.stack f in
let state = { state with stack } in
if return then State.return state else State.Continue state
let func_type (state : State.exec_state) (f : Func_intf.t) =
match f with
| WASM (_, func, _) ->
let (Bt_raw ((None | Some _), t)) = func.type_f in
t
| Extern f ->
let f = Env.get_extern_func state.env f in
Extern_func.extern_type f
let call_ref ~return:_ (_state : State.exec_state) _typ_i =
(* TODO *)
assert false
(* let fun_ref, stack = Stack.pop_as_ref state.stack in *)
(* let state = { state with stack } in *)
(* let func = *)
(* match fun_ref with *)
(* | exception Invalid_argument _ -> trap "undefined element" *)
(* | Funcref (Some f) -> f *)
(* | Funcref None -> trap (Printf.sprintf "calling null function reference") *)
(* | _ -> trap "element type error" *)
(* in *)
(* let pt, rt = Func.typ func in *)
(* let pt', rt' = typ_i in *)
(* if not (rt = rt' && List.equal p_type_eq pt pt') then *)
(* trap "indirect call type mismatch"; *)
(* exec_vfunc ~return state func *)
let call_indirect ~return (state : State.exec_state)
(tbl_i, (Bt_raw ((None | Some _), typ_i) : binary block_type)) =
let fun_i, stack = Stack.pop_i32 state.stack in
let state = { state with stack } in
let* t = Env.get_table state.env tbl_i in
let _null, ref_kind = Table.typ t in
match ref_kind with
| Func_ht ->
let size = Table.size t in
let> out_of_bounds = I32.(le_u (consti size) fun_i) in
if out_of_bounds then Choice.trap Undefined_element
else
let* fun_i = Choice.select_i32 fun_i in
let fun_i = Int32.to_int fun_i in
let f_ref = Table.get t fun_i in
begin
match Ref.get_func f_ref with
| Null -> Choice.trap (Uninitialized_element fun_i)
| Type_mismatch -> Choice.trap Element_type_error
| Ref_value func ->
let ft = func_type state func in
let ft' = typ_i in
if not (Types.func_type_eq ft ft') then
Choice.trap Indirect_call_type_mismatch
else exec_vfunc ~return state func
end
| _ -> Choice.trap Indirect_call_type_mismatch
let exec_instr instr (state : State.exec_state) : State.instr_result Choice.t
=
State.count_instruction state;
let stack = state.stack in
let env = state.env in
let locals = state.locals in
let st stack = Choice.return (State.Continue { state with stack }) in
Log.debug2 "stack : [ %a ]@." Stack.pp stack;
Log.debug2 "running instr: %a@." Types.pp_instr instr;
match instr with
| Return -> Choice.return (State.return state)
| Nop -> Choice.return (State.Continue state)
| Unreachable -> Choice.trap Unreachable
| I32_const n -> st @@ Stack.push_const_i32 stack n
| I64_const n -> st @@ Stack.push_const_i64 stack n
| F32_const f -> st @@ Stack.push_const_f32 stack f
| F64_const f -> st @@ Stack.push_const_f64 stack f
| I_unop (nn, op) -> st @@ exec_iunop stack nn op
| F_unop (nn, op) -> st @@ exec_funop stack nn op
| I_binop (nn, op) ->
let* stack = exec_ibinop stack nn op in
st stack
| F_binop (nn, op) -> st @@ exec_fbinop stack nn op
| I_testop (nn, op) -> st @@ exec_itestop stack nn op
| I_relop (nn, op) -> st @@ exec_irelop stack nn op
| F_relop (nn, op) -> st @@ exec_frelop stack nn op
| I_extend8_s nn -> begin
match nn with
| S32 ->
let n, stack = Stack.pop_i32 stack in
let n = I32.extend_s 8 n in
st @@ Stack.push_i32 stack n
| S64 ->
let n, stack = Stack.pop_i64 stack in
let n = I64.extend_s 8 n in
st @@ Stack.push_i64 stack n
end
| I_extend16_s nn -> begin
match nn with
| S32 ->
let n, stack = Stack.pop_i32 stack in
let n = I32.extend_s 16 n in
st @@ Stack.push_i32 stack n
| S64 ->
let n, stack = Stack.pop_i64 stack in
let n = I64.extend_s 16 n in
st @@ Stack.push_i64 stack n
end
| I64_extend32_s ->
let n, stack = Stack.pop_i64 stack in
let n = I64.extend_s 32 n in
st @@ Stack.push_i64 stack n
| I32_wrap_i64 ->
let n, stack = Stack.pop_i64 stack in
let n = I32.wrap_i64 n in
st @@ Stack.push_i32 stack n
| I64_extend_i32 s ->
let n, stack = Stack.pop_i32 stack in
let n =
match s with S -> I64.extend_i32_s n | U -> I64.extend_i32_u n
in
st @@ Stack.push_i64 stack n
| I_trunc_f (nn, nn', s) -> st @@ exec_itruncf stack nn nn' s
| I_trunc_sat_f (nn, nn', s) -> st @@ exec_itruncsatf stack nn nn' s
| F32_demote_f64 ->
let n, stack = Stack.pop_f64 stack in
let n = F32.demote_f64 n in
st @@ Stack.push_f32 stack n
| F64_promote_f32 ->
let n, stack = Stack.pop_f32 stack in
let n = F64.promote_f32 n in
st @@ Stack.push_f64 stack n
| F_convert_i (nn, nn', s) -> st @@ exec_fconverti stack nn nn' s
| I_reinterpret_f (nn, nn') -> st @@ exec_ireinterpretf stack nn nn'
| F_reinterpret_i (nn, nn') -> st @@ exec_freinterpreti stack nn nn'
| Ref_null t -> st @@ Stack.push stack (ref_null t)
| Ref_is_null ->
let r, stack = Stack.pop_as_ref stack in
let is_null = ref_is_null r in
st @@ Stack.push_bool stack is_null
| Ref_func (Raw i) ->
let f = Env.get_func env i in
st @@ Stack.push stack (ref_func f)
| Drop -> st @@ Stack.drop stack
| Local_get (Raw i) -> st @@ Stack.push stack (State.Locals.get locals i)
| Local_set (Raw i) ->
let v, stack = Stack.pop stack in
let locals = State.Locals.set locals i v in
Choice.return (State.Continue { state with locals; stack })
| If_else (_id, bt, e1, e2) ->
let* b, stack = pop_choice stack in
let state = { state with stack } in
exec_block state ~is_loop:false bt (if b then e1 else e2)
| Call (Raw i) -> begin
let func = Env.get_func env i in
exec_vfunc ~return:false state func
end
| Return_call (Raw i) -> begin
let func = Env.get_func env i in
exec_vfunc ~return:true state func
end
| Br (Raw i) -> State.branch state i
| Br_if (Raw i) ->
let* b, stack = pop_choice stack in
let state = { state with stack } in
if b then State.branch state i else Choice.return (State.Continue state)
| Loop (_id, bt, e) -> exec_block state ~is_loop:true bt e
| Block (_id, bt, e) -> exec_block state ~is_loop:false bt e
| Memory_size ->
let* mem = Env.get_memory env mem_0 in
let len = Memory.size_in_pages mem in
st @@ Stack.push_i32 stack len
| Memory_grow -> begin
let* mem = Env.get_memory env mem_0 in
let old_size = I64.of_int32 @@ Memory.size mem in
let max_size = Memory.get_limit_max mem in
let delta, stack = Stack.pop_i32 stack in
let delta = I64.(of_int32 delta * page_size) in
let new_size = I64.(old_size + delta) in
let> too_big =
Bool.or_ I64.(ge_u new_size (page_size * page_size))
@@
match max_size with
| Some max -> I64.(gt_u new_size (max * page_size))
| None ->
(* TODO: replace by false... *)
I64.(const_i64 0L <> const_i64 0L)
in
st
@@
if too_big then Stack.push_i32 stack I32.(sub (const 0l) (const 1l))
else begin
Memory.grow mem I64.(to_int32 delta);
let res = I64.(to_int32 @@ (old_size / page_size)) in
Stack.push_i32 stack res
end
end
| Memory_fill ->
let len, stack = Stack.pop_i32 stack in
let c, stack = Stack.pop_i32 stack in
let pos, stack = Stack.pop_i32 stack in
let* mem = Env.get_memory env mem_0 in
let* c = Choice.select_i32 c in
let c =
let c = Int32.to_int c in
let c = Int.abs c mod 256 in
Char.chr c
in
(* TODO: move out of bonds check here ! *)
let> out_of_bounds = Memory.fill mem ~pos ~len c in
if out_of_bounds then Choice.trap Out_of_bounds_memory_access
else st stack
| Memory_copy ->
let* mem = Env.get_memory env mem_0 in
let len, stack = Stack.pop_i32 stack in
let src, stack = Stack.pop_i32 stack in
let dst, stack = Stack.pop_i32 stack in
(* TODO: move out of bonds check here ! *)
let> out_of_bounds = Memory.blit mem ~src ~dst ~len in
if out_of_bounds then Choice.trap Out_of_bounds_memory_access
else st stack
| Memory_init (Raw i) ->
let* mem = Env.get_memory env mem_0 in
let len, stack = Stack.pop_i32 stack in
let src, stack = Stack.pop_i32 stack in
let dst, stack = Stack.pop_i32 stack in
let* data = Env.get_data env i in
let data = Data.value data in
(* TODO: move out of bonds check here ! *)
let> out_of_bounds = Memory.blit_string mem data ~src ~dst ~len in
if out_of_bounds then Choice.trap Out_of_bounds_memory_access
else st stack
| Select _t ->
if use_ite_for_select then begin
let b, stack = Stack.pop_bool stack in
let o2, stack = Stack.pop stack in
let o1, stack = Stack.pop stack in
let* res = P.select b ~if_true:o1 ~if_false:o2 in
st @@ Stack.push stack res
end
else begin
let* b, stack = pop_choice stack in
let o2, stack = Stack.pop stack in
let o1, stack = Stack.pop stack in
st @@ Stack.push stack (if b then o1 else o2)
end
| Local_tee (Raw i) ->
let v, stack = Stack.pop stack in
let locals = State.Locals.set locals i v in
let stack = Stack.push stack v in
Choice.return (State.Continue { state with locals; stack })
| Global_get (Raw i) ->
let* g = Env.get_global env i in
st @@ Stack.push stack (Global.value g)
| Global_set (Raw i) ->
let* global = Env.get_global env i in
let v, stack =
match Global.typ global with
| Ref_type _rt -> Stack.pop_ref stack
| Num_type nt -> (
match nt with
| I32 ->
let v, stack = Stack.pop_i32 stack in
(I32 v, stack)
| I64 ->
let v, stack = Stack.pop_i64 stack in
(I64 v, stack)
| F32 ->
let v, stack = Stack.pop_f32 stack in
(F32 v, stack)
| F64 ->
let v, stack = Stack.pop_f64 stack in
(F64 v, stack) )
in
Global.set_value global v;
st stack
| Table_get (Raw i) ->
let* t = Env.get_table env i in
let i, stack = Stack.pop_i32 stack in
let* i = Choice.select_i32 i in
let i = Int32.to_int i in
let size = Table.size t in
if i < 0 || i >= size then Choice.trap Out_of_bounds_table_access
else
let v = Table.get t i in
st @@ Stack.push stack (Ref v)
| Table_set (Raw indice) ->
let* t = Env.get_table env indice in
let v, stack = Stack.pop_as_ref stack in
let indice, stack = Stack.pop_i32 stack in
let* indice = Choice.select_i32 indice in
let indice = Int32.to_int indice in
if indice < 0 || indice >= Table.size t then
Choice.trap Out_of_bounds_table_access
else begin
Table.set t indice v;
st stack
end
| Table_size (Raw indice) ->
let* t = Env.get_table env indice in
let size = consti @@ Table.size t in
st @@ Stack.push_i32 stack size
| Table_grow (Raw indice) ->
let* t = Env.get_table env indice in
let size = consti @@ Table.size t in
let delta, stack = Stack.pop_i32 stack in
let new_size = I32.(size + delta) in
let allowed =
Bool.and_
( match Table.max_size t with
| None -> Bool.const true
| Some max -> I32.ge_u (consti max) new_size )
(I32.ge_u new_size size)
in
let> allowed in
if not allowed then
let stack = Stack.drop stack in
st @@ Stack.push_i32_of_int stack (-1)
else
let new_element, stack = Stack.pop_as_ref stack in
let* new_size = Choice.select_i32 new_size in
Table.grow t new_size new_element;
st @@ Stack.push_i32 stack size
| Table_fill (Raw indice) ->
let* t = Env.get_table env indice in
let len, stack = Stack.pop_i32 stack in
let x, stack = Stack.pop_as_ref stack in
let pos, stack = Stack.pop_i32 stack in
let> out_of_bounds = I32.gt_u I32.(pos + len) (consti (Table.size t)) in
if out_of_bounds then Choice.trap Out_of_bounds_table_access
else begin
let* pos = Choice.select_i32 pos in
let* len = Choice.select_i32 len in
Table.fill t pos len x;
st stack
end
| Table_copy (Raw ti_dst, Raw ti_src) -> begin
let* t_src = Env.get_table env ti_src in
let* t_dst = Env.get_table env ti_dst in
let len, stack = Stack.pop_i32 stack in
let src, stack = Stack.pop_i32 stack in
let dst, stack = Stack.pop_i32 stack in
let> out_of_bounds =
let t_src_len = Table.size t_src in
let t_dst_len = Table.size t_dst in
Bool.or_ (I32.gt_u I32.(src + len) (consti t_src_len))
@@ Bool.or_ (I32.gt_u I32.(dst + len) (consti t_dst_len))
(* TODO: I don't understand why this last one check is needed... *)
@@ Bool.or_ (I32.lt src (const 0l)) (I32.lt dst (const 0l))
in
if out_of_bounds then Choice.trap Out_of_bounds_table_access
else begin
let* () =
let> len_is_not_zero = I32.ne len (const 0l) in
if len_is_not_zero then begin
let* src = Choice.select_i32 src in
let* dst = Choice.select_i32 dst in
let+ len = Choice.select_i32 len in
Table.copy ~t_src ~t_dst ~src ~dst ~len
end
else return ()
in
st stack
end
end
| Table_init (Raw t_i, Raw e_i) -> begin
let* t = Env.get_table env t_i in
let elem = Env.get_elem env e_i in
let len, stack = Stack.pop_i32 stack in
let pos_x, stack = Stack.pop_i32 stack in
let pos, stack = Stack.pop_i32 stack in
let table_size = Table.size t in
let elem_len = Elem.size elem in
let> out_of_bounds =
Bool.or_ I32.(gt_u (pos_x + len) (consti elem_len))
@@ Bool.or_
I32.(gt_u (pos + len) (consti table_size))
I32.(const 0l > pos)
in
if out_of_bounds then Choice.trap Out_of_bounds_table_access
else begin
let* len = Choice.select_i32 len in
let* pos_x = Choice.select_i32 pos_x in
let* pos = Choice.select_i32 pos in
let len = Int32.to_int len in
let pos_x = Int32.to_int pos_x in
let pos = Int32.to_int pos in
for i = 0 to len - 1 do
let elt = Elem.get elem (pos_x + i) in
Table.set t (pos + i) elt
done;
st stack
end
end
| Elem_drop (Raw i) ->
let elem = Env.get_elem env i in
Env.drop_elem elem;
st stack
| I_load16 (nn, sx, { offset; _ }) -> (
let* mem = Env.get_memory env mem_0 in
let pos, stack = Stack.pop_i32 stack in
let offset = const offset in
let addr = I32.(pos + offset) in
let> out_of_bounds =
Bool.or_ I32.(offset < const 0l)
@@ Bool.or_
I32.(lt_u (Memory.size mem) (addr + const 2l))
I32.(pos < const 0l)
in
if out_of_bounds then Choice.trap Out_of_bounds_memory_access
else
let* res =
(match sx with S -> Memory.load_16_s | U -> Memory.load_16_u)
mem addr
in
st
@@
match nn with
| S32 -> Stack.push_i32 stack res
| S64 -> Stack.push_i64 stack (I64.of_int32 res) )
| I_load8 (nn, sx, { offset; _ }) -> (
let* mem = Env.get_memory env mem_0 in
let pos, stack = Stack.pop_i32 stack in
let offset = const offset in
let addr = I32.(pos + offset) in
let> out_of_bounds =
Bool.or_ I32.(offset < const 0l)
@@ Bool.or_
I32.(lt_u (Memory.size mem) (addr + const 1l))
I32.(pos < const 0l)
in
if out_of_bounds then Choice.trap Out_of_bounds_memory_access
else
let* res =
(match sx with S -> Memory.load_8_s | U -> Memory.load_8_u) mem addr
in
st
@@
match nn with
| S32 -> Stack.push_i32 stack res
| S64 -> Stack.push_i64 stack (I64.of_int32 res) )
| I_store8 (nn, { offset; _ }) ->
let* mem = Env.get_memory env mem_0 in
let n, stack =
match nn with
| S32 ->
let n, stack = Stack.pop_i32 stack in
(n, stack)
| S64 ->
let n, stack = Stack.pop_i64 stack in
(I64.to_int32 n, stack)
in
let pos, stack = Stack.pop_i32 stack in
let offset = const offset in
let addr = I32.(pos + offset) in
let> out_of_bounds =
Bool.or_ I32.(offset < const 0l)
@@ Bool.or_
I32.(lt_u (Memory.size mem) (addr + const 1l))
I32.(pos < const 0l)
in
if out_of_bounds then Choice.trap Out_of_bounds_memory_access
else begin
let* () = Memory.store_8 mem ~addr n in
(* Thread memory ? *)
st stack
end
| I_load (nn, { offset; _ }) ->
let* mem = Env.get_memory env mem_0 in
let pos, stack = Stack.pop_i32 stack in
let memory_length = Memory.size mem in
let offset = const offset in
let addr = I32.(pos + offset) in
let> out_of_bounds =
Bool.or_ I32.(offset < const 0l) I32.(pos < const 0l)
in
if out_of_bounds then Choice.trap Out_of_bounds_memory_access
else begin
match nn with
| S32 ->
let> out_of_bounds = I32.(lt_u memory_length (addr + const 4l)) in
if out_of_bounds then Choice.trap Out_of_bounds_memory_access
else
let* res = Memory.load_32 mem addr in
st @@ Stack.push_i32 stack res
| S64 ->
let> out_of_bounds = I32.(lt_u memory_length (addr + const 8l)) in
if out_of_bounds then Choice.trap Out_of_bounds_memory_access
else
let* res = Memory.load_64 mem addr in
st @@ Stack.push_i64 stack res
end
| F_load (nn, { offset; _ }) ->
let* mem = Env.get_memory env mem_0 in
let pos, stack = Stack.pop_i32 stack in
let memory_length = Memory.size mem in
let offset = const offset in
let addr = I32.(pos + offset) in
let> out_of_bounds =
Bool.or_ I32.(offset < const 0l) @@ I32.(pos < const 0l)
in
if out_of_bounds then Choice.trap Out_of_bounds_memory_access
else begin
match nn with
| S32 ->
let> out_of_bounds = I32.(lt_u memory_length (addr + const 4l)) in
if out_of_bounds then Choice.trap Out_of_bounds_memory_access
else
let* res = Memory.load_32 mem addr in
let res = F32.of_bits res in
st @@ Stack.push_f32 stack res
| S64 ->
let> out_of_bounds = I32.(lt_u memory_length (addr + const 8l)) in
if out_of_bounds then Choice.trap Out_of_bounds_memory_access
else
let* res = Memory.load_64 mem addr in
let res = F64.of_bits res in
st @@ Stack.push_f64 stack res
end
| I_store (nn, { offset; _ }) -> (
let* mem = Env.get_memory env mem_0 in
let memory_length = Memory.size mem in
let offset = const offset in
match nn with
| S32 ->
let n, stack = Stack.pop_i32 stack in
let pos, stack = Stack.pop_i32 stack in
let addr = I32.(pos + offset) in
let> out_of_bounds =
Bool.or_ I32.(lt_u memory_length (addr + const 4l))
@@ I32.(pos < const 0l)
in
if out_of_bounds then Choice.trap Out_of_bounds_memory_access
else begin
let* () = Memory.store_32 mem ~addr n in
st stack
end
| S64 ->
let n, stack = Stack.pop_i64 stack in
let pos, stack = Stack.pop_i32 stack in
let addr = I32.(pos + offset) in
let> out_of_bounds =
Bool.or_ I32.(lt_u memory_length (addr + const 8l))
@@ I32.(pos < const 0l)
in
if out_of_bounds then Choice.trap Out_of_bounds_memory_access
else begin
let* () = Memory.store_64 mem ~addr n in
st stack
end )
| F_store (nn, { offset; _ }) -> (
let* mem = Env.get_memory env mem_0 in
let memory_length = Memory.size mem in
let offset = const offset in
match nn with
| S32 ->
let n, stack = Stack.pop_f32 stack in
let pos, stack = Stack.pop_i32 stack in
let addr = I32.(pos + offset) in
let> out_of_bounds =
Bool.or_ I32.(lt_u memory_length (addr + const 4l))
@@ I32.(pos < const 0l)
in
if out_of_bounds then Choice.trap Out_of_bounds_memory_access
else begin
let* () = Memory.store_32 mem ~addr (F32.to_bits n) in
st stack
end
| S64 ->
let n, stack = Stack.pop_f64 stack in
let pos, stack = Stack.pop_i32 stack in
let addr = I32.(pos + offset) in
let> out_of_bounds =
Bool.or_ I32.(lt_u memory_length (addr + const 8l))
@@ I32.(pos < const 0l)
in
if out_of_bounds then Choice.trap Out_of_bounds_memory_access
else begin
let* () = Memory.store_64 mem ~addr (F64.to_bits n) in
st stack
end )
| I64_load32 (sx, { offset; _ }) ->
let* mem = Env.get_memory env mem_0 in
let offset = const offset in
let memory_length = Memory.size mem in
let pos, stack = Stack.pop_i32 stack in
let addr = I32.(pos + offset) in
let> out_of_bounds =
Bool.or_ I32.(offset < const 0l)
@@ Bool.or_ I32.(pos < const 0l)
@@ I32.(lt_u memory_length (addr + const 4l))
in
if out_of_bounds then Choice.trap Out_of_bounds_memory_access
else begin
let* res = Memory.load_32 mem addr in
let res = I64.of_int32 res in
let res =
match sx with
| S -> res
| U ->
let open I64 in
let a = shl (const_i64 1L) (const_i64 32L) in
let b = a - const_i64 1L in
logand res b
in
st @@ Stack.push_i64 stack res
end
| I_store16 (nn, { offset; _ }) ->
let* mem = Env.get_memory env mem_0 in
let offset = const offset in
let memory_length = Memory.size mem in
let n, stack =
match nn with
| S32 ->
let n, stack = Stack.pop_i32 stack in
(n, stack)
| S64 ->
let n, stack = Stack.pop_i64 stack in
(I64.to_int32 n, stack)
in
let pos, stack = Stack.pop_i32 stack in
let addr = I32.(pos + offset) in
let> out_of_bounds =
Bool.or_ I32.(pos < const 0l) I32.(lt_u memory_length (addr + const 2l))
in
if out_of_bounds then Choice.trap Out_of_bounds_memory_access
else begin
let* () = Memory.store_16 mem ~addr n in
st stack
end
| I64_store32 { offset; _ } ->
let* mem = Env.get_memory env mem_0 in
let offset = const offset in
let memory_length = Memory.size mem in
let n, stack = Stack.pop_i64 stack in
let n = I64.to_int32 n in
let pos, stack = Stack.pop_i32 stack in
let addr = I32.(pos + offset) in
let> out_of_bounds =
Bool.or_ I32.(pos < const 0l)
@@ I32.(lt_u memory_length (addr + const 4l))
in
if out_of_bounds then Choice.trap Out_of_bounds_memory_access
else begin
let* () = Memory.store_32 mem ~addr n in
st stack
end
| Data_drop (Raw i) ->
let* data = Env.get_data env i in
Env.drop_data data;
st stack
| Br_table (inds, Raw i) ->
let target, stack = Stack.pop_i32 stack in
let> out = I32.(ge_u target (const (Int32.of_int (Array.length inds)))) in
let* target =
if out then return i
else
let+ target = Choice.select_i32 target in
let target = Int32.to_int target in
let (Raw i) = inds.(target) in
i
in
let state = { state with stack } in
State.branch state target
| Call_indirect (Raw tbl_i, typ_i) ->
call_indirect ~return:false state (tbl_i, typ_i)
| Return_call_indirect (Raw tbl_i, typ_i) ->
call_indirect ~return:true state (tbl_i, typ_i)
| Call_ref typ_i -> call_ref ~return:false state typ_i
| Return_call_ref typ_i -> call_ref ~return:true state typ_i
| Array_new _t ->
let len, stack = Stack.pop_i32 stack in
let* len = Choice.select_i32 len in
let _default, stack = Stack.pop stack in
let a =
Array.init (Int32.to_int len) (fun _i -> (* TODO: use default *) ())
in
st @@ Stack.push_array stack a
| Array_new_default _t ->
let len, stack = Stack.pop_i32 stack in
let* len = Choice.select_i32 len in
let default = (* TODO: get it from t *) () in
let a = Array.init (Int32.to_int len) (fun _i -> default) in
st @@ Stack.push_array stack a
| ( Array_new_data _ | Array_new_elem _ | Array_new_fixed _ | Array_get _
| Array_get_u _ | Array_set _ | Array_len | Ref_i31 | I31_get_s
| I31_get_u | Struct_get _ | Struct_get_s _ | Struct_set _ | Struct_new _
| Struct_new_default _ | Extern_externalize | Extern_internalize
| Ref_as_non_null | Ref_cast _ | Ref_test _ | Ref_eq | Br_on_cast _
| Br_on_cast_fail _ | Br_on_non_null _ | Br_on_null _ ) as i ->
Log.debug2 "TODO (Interpret.exec_instr) %a@\n" Types.pp_instr i;
st stack
let rec loop (state : State.exec_state) =
match state.pc with
| instr :: pc -> begin
let* state = exec_instr instr { state with pc } in
match state with
| State.Continue state -> loop state
| State.Return res -> Choice.return res
end
| [] -> (
Log.debug2 "stack : [ %a ]@." Stack.pp state.stack;
let* state = State.end_block state in
match state with
| State.Continue state -> loop state
| State.Return res -> Choice.return res )
let exec_expr envs env locals stack expr bt =
let count = State.empty_count (Some "start") in
count.enter <- count.enter + 1;
let state : State.exec_state =
let func_rt = match bt with None -> [] | Some rt -> rt in
{ stack
; locals
; env
; envs
; func_rt
; block_stack = []
; pc = expr
; return_state = None
; count
}
in
let+ state = loop state in
(state, count)
let modul envs (modul : Module_to_run.t) =
Log.debug0 "interpreting ...@\n";
try
begin
let+ () =
List.fold_left
(fun u to_run ->
let* () = u in
let+ _end_stack, count =
let env = Module_to_run.env modul in
exec_expr envs env (State.Locals.of_list []) Stack.empty to_run
None
in
Log.profile3 "Exec module %s@.%a@."
(Option.value (Module_to_run.id modul) ~default:"anonymous")
State.print_count count )
(Choice.return ())
(Module_to_run.to_run modul)
in
Ok ()
end
with
| Trap msg -> Choice.return (Error (`Msg msg))
| Stack_overflow -> Choice.return (Error `Call_stack_exhausted)
let exec_vfunc_from_outside ~locals ~env ~envs func =
let env = Env_id.get env envs in
let exec_state = State.empty_exec_state ~locals ~env ~envs in
try
begin
let* state =
match func with
| Func_intf.WASM (id, func, env_id) ->
let env = Env_id.get env_id exec_state.State.envs in
let stack = locals in
let state = State.{ exec_state with stack } in
let id = Raw id in
Choice.return
(State.Continue (exec_func ~return:true ~id state env func))
| Extern f ->
let f = Env.get_extern_func exec_state.env f in
let+ stack = exec_extern_func exec_state.env exec_state.stack f in
let state = State.{ exec_state with stack } in
State.return state
in
match state with
| State.Return res -> Choice.return (Ok res)
| State.Continue state ->
let+ res = loop state in
Ok res
end
with
| Trap msg -> Choice.return (Error (`Msg msg))
| Stack_overflow -> Choice.return (Error `Call_stack_exhausted)
type value = Value.t
end
module Concrete = Make [@inlined hint] (Concrete)
module SymbolicP = Make [@inlined hint] (Symbolic.P)
module SymbolicM = Make [@inlined hint] (Symbolic.M)
module Concolic = Make [@inlined hint] (Concolic.P)