1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
include Float64
type t = Float64.t
let promote_f32 x =
if Float32.eq x x then Float64.of_float @@ Float32.to_float x
else
let nan32bits = Concrete_i64.extend_i32_u (Float32.to_bits x) in
let sign_field = Int64.(shift_left (shift_right_logical nan32bits 31) 63) in
let significand_field =
Int64.(shift_right_logical (shift_left nan32bits 41) 12)
in
let fields = Int64.logor sign_field significand_field in
let nan64bits = Int64.logor 0x7ff8_0000_0000_0000L fields in
Float64.of_bits nan64bits
let convert_i32_s x = Float64.of_float (Int32.to_float x)
(*
* Unlike the other convert_u functions, the high half of the i32 range is
* within the range where f32 can represent odd numbers, so we can't do the
* shift. Instead, we can use int64 signed arithmetic.
*)
let convert_i32_u x =
Float64.of_float Int64.(to_float (logand (of_int32 x) 0x0000_0000_ffff_ffffL))
let convert_i64_s x = Float64.of_float (Int64.to_float x)
(*
* Values in the low half of the int64 range can be converted with a signed
* conversion. The high half is beyond the range where f64 can represent odd
* numbers, so we can shift the value right, adjust the least significant
* bit to round correctly, do a conversion, and then scale it back up.
*)
let convert_i64_u x =
Float64.of_float
Int64.(
if Int64.ge x zero then to_float x
else to_float (logor (shift_right_logical x 1) (logand x 1L)) *. 2.0 )
let reinterpret_i64 = Float64.of_bits
let of_concrete v = v