1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
(* SPDX-License-Identifier: AGPL-3.0-or-later *)
(* Copyright © 2021-2024 OCamlPro *)
(* Written by the Owi programmers *)
module P = struct
type thread = Concolic_choice.thread
module Value = Concolic_value.V
module Choice' : Choice_intf.Base with module V := Value = Concolic_choice
module Choice = Concolic_choice
let select (c : Value.vbool) ~(if_true : Value.t) ~(if_false : Value.t) :
Value.t Choice.t =
(* TODO / Think: this should probably be an ite expression in the symbolic part ? *)
let select if_true if_false =
if c.concrete then if_true.Concolic_value.concrete
else if_false.Concolic_value.concrete
in
match (if_true, if_false) with
| I32 if_true, I32 if_false ->
Choice.return
@@ Value.I32
{ symbolic =
Symbolic_value.Bool.select_expr c.symbolic
~if_true:if_true.symbolic ~if_false:if_false.symbolic
; concrete = select if_true if_false
}
| I64 if_true, I64 if_false ->
Choice.return
@@ Value.I64
{ symbolic =
Symbolic_value.Bool.select_expr c.symbolic
~if_true:if_true.symbolic ~if_false:if_false.symbolic
; concrete = select if_true if_false
}
| F32 if_true, F32 if_false ->
Choice.return
@@ Value.F32
{ symbolic =
Symbolic_value.Bool.select_expr c.symbolic
~if_true:if_true.symbolic ~if_false:if_false.symbolic
; concrete = select if_true if_false
}
| F64 if_true, F64 if_false ->
Choice.return
@@ Value.F64
{ symbolic =
Symbolic_value.Bool.select_expr c.symbolic
~if_true:if_true.symbolic ~if_false:if_false.symbolic
; concrete = select if_true if_false
}
| Ref _, Ref _ ->
(* Concretization: add something to the PC *)
Fmt.failwith "TODO"
| _, _ -> assert false
module Global = struct
open Concolic_value
type t = (Concrete_global.t, Symbolic_global.t) cs
let value (g : t) : Value.t =
Concolic_value.V.value_pair
(Concrete_global.value g.concrete)
(Symbolic_global.value g.symbolic)
let set_value (g : t) cs =
Concrete_global.set_value g.concrete (Concolic_value.V.concrete_value cs);
Symbolic_global.set_value g.symbolic (Concolic_value.V.symbolic_value cs)
let mut (g : t) = Concrete_global.mut g.concrete
let typ (g : t) = Concrete_global.typ g.concrete
end
module Table = struct
open Concolic_value
type t = (Concrete_table.t, Symbolic_table.t) cs
let get t i =
Concolic_value.V.pair
(Concrete_table.get t.concrete i)
(Symbolic_table.get t.symbolic i)
let set t i v =
Concrete_table.set t.concrete i v.concrete;
Symbolic_table.set t.symbolic i v.symbolic
let size t = Concrete_table.size t.concrete
let typ t = Concrete_table.typ t.concrete
let max_size t = Concrete_table.max_size t.concrete
let grow t new_size x =
Concrete_table.grow t.concrete new_size x.concrete;
Symbolic_table.grow t.symbolic new_size x.symbolic
let fill t pos len x =
Concrete_table.fill t.concrete pos len x.concrete;
Symbolic_table.fill t.symbolic pos len x.symbolic
let copy ~t_src ~t_dst ~src ~dst ~len =
Concrete_table.copy ~t_src:t_src.concrete ~t_dst:t_dst.concrete ~src ~dst
~len;
Symbolic_table.copy ~t_src:t_src.symbolic ~t_dst:t_dst.symbolic ~src ~dst
~len
end
module Memory = struct
open Concolic_value
type t = (Concrete_memory.t, Symbolic_memory.t) cs
module C = Concrete_memory
module S = Symbolic_memory
let with_concrete m a f_c f_s =
let open Choice in
let+ a = Choice.select_i32 a in
{ concrete = f_c m.concrete a
; symbolic = f_s m.symbolic (Symbolic_value.const_i32 a)
}
let with_concrete_store m a f_c f_s v =
let open Choice in
let+ addr = Choice.select_i32 a in
f_c m.concrete ~addr v.concrete;
f_s m.symbolic ~addr:(Symbolic_value.const_i32 addr) v.symbolic
let load_8_s m a = with_concrete m a C.load_8_s S.load_8_s
let load_8_u m a = with_concrete m a C.load_8_u S.load_8_u
let load_16_s m a = with_concrete m a C.load_16_s S.load_16_s
let load_16_u m a = with_concrete m a C.load_16_u S.load_16_u
let load_32 m a = with_concrete m a C.load_32 S.load_32
let load_64 m a = with_concrete m a C.load_64 S.load_64
let store_8 m ~addr v = with_concrete_store m addr C.store_8 S.store_8 v
let store_16 m ~addr v = with_concrete_store m addr C.store_16 S.store_16 v
let store_32 m ~addr v = with_concrete_store m addr C.store_32 S.store_32 v
let store_64 m ~addr v = with_concrete_store m addr C.store_64 S.store_64 v
let grow m delta =
Concrete_memory.grow m.concrete delta.concrete;
Symbolic_memory.grow m.symbolic delta.symbolic
let size m =
{ concrete = Concrete_memory.size m.concrete
; symbolic = Symbolic_memory.size m.symbolic
}
let size_in_pages m =
{ concrete = Concrete_memory.size_in_pages m.concrete
; symbolic = Symbolic_memory.size_in_pages m.symbolic
}
let fill _ = assert false
let blit _ = assert false
let blit_string m s ~src ~dst ~len =
{ concrete =
Concrete_memory.blit_string m.concrete s ~src:src.concrete
~dst:dst.concrete ~len:len.concrete
; symbolic =
Symbolic_memory.blit_string m.symbolic s ~src:src.symbolic
~dst:dst.symbolic ~len:len.symbolic
}
let get_limit_max _ = Fmt.failwith "TODO"
end
module Extern_func = Concrete_value.Make_extern_func (Value) (Choice) (Memory)
module Data = struct
type t = Link_env.data
let value data = data.Link_env.value
end
module Elem = struct
type t = Link_env.elem
let get (elem : t) i : Value.ref_value =
match elem.value.(i) with
| Funcref f -> { concrete = Funcref f; symbolic = Funcref f }
| _ -> assert false
let size (elem : t) = Array.length elem.value
end
module Env = struct
type t = Extern_func.extern_func Link_env.t
type t' = Env_id.t
let get_memory env id : Memory.t Choice.t =
let orig_mem = Link_env.get_memory env id in
let f (t : thread) : Memory.t =
let sym_mem =
Symbolic_memory.get_memory (Link_env.id env) orig_mem
t.shared.memories id
in
{ concrete = orig_mem; symbolic = sym_mem }
in
Choice.with_thread f
let get_func env id = Link_env.get_func env id
let get_extern_func env id = Link_env.get_extern_func env id
let get_table env id : Table.t Choice.t =
let orig_table = Link_env.get_table env id in
let f (t : thread) : Table.t =
let sym_table =
Symbolic_table.get_table (Link_env.id env) orig_table t.shared.tables
id
in
{ concrete = orig_table; symbolic = sym_table }
in
Choice.with_thread f
let get_elem env i = Link_env.get_elem env i
let get_data env n =
let data = Link_env.get_data env n in
Choice.return data
let get_global env id : Global.t Choice.t =
let orig_global = Link_env.get_global env id in
let f (t : thread) : Global.t =
let sym_global =
Symbolic_global.get_global (Link_env.id env) orig_global
t.shared.globals id
in
{ concrete = orig_global; symbolic = sym_global }
in
Choice.with_thread f
let drop_elem _ =
(* TODO *)
()
let drop_data = Link_env.drop_data
end
module Module_to_run = struct
type t =
{ id : string option
; env : Env.t
; to_run : Types.binary Types.expr list
}
let env (t : t) = t.env
let id (t : t) = t.id
let to_run (t : t) = t.to_run
end
end
module P' : Interpret_intf.P = P
let convert_module_to_run (m : 'f Link.module_to_run) =
P.Module_to_run.{ id = m.id; env = m.env; to_run = m.to_run }
let backup (m : P.Module_to_run.t) = Link_env.backup m.env
let recover b (m : P.Module_to_run.t) = Link_env.recover b m.env