1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
(* SPDX-License-Identifier: AGPL-3.0-or-later *)
(* Copyright © 2021-2024 OCamlPro *)
(* Written by the Owi programmers *)

open Syntax

module Type = struct
  type t = Binary.func_type

  let compare (x : t) (y : t) = Binary.compare_func_type x y
end

module TypeMap = Map.Make (Type)

let typemap (types : Type.t Named.t) =
  Named.fold (fun idx typ acc -> TypeMap.add typ idx acc) types TypeMap.empty

let rewrite_num_type : Text.num_type -> Binary.num_type = function
  | I32 -> I32
  | I64 -> I64
  | F32 -> F32
  | F64 -> F64
  | V128 -> V128

let rewrite_heap_type : Text.heap_type -> Binary.heap_type = function
  | Func_ht -> Binary.Func_ht
  | Extern_ht -> Binary.Extern_ht

let rewrite_nullable (nullable : Text.nullable) : Binary.nullable =
  match nullable with No_null -> No_null | Null -> Null

let rewrite_ref_type ((nullable, heap_type) : Text.ref_type) : Binary.ref_type =
  let nullable = rewrite_nullable nullable in
  let heap_type = rewrite_heap_type heap_type in
  (nullable, heap_type)

let rewrite_val_type : Text.val_type -> Binary.val_type = function
  | Num_type t -> Num_type (rewrite_num_type t)
  | Ref_type t -> Ref_type (rewrite_ref_type t)

let rewrite_param ((name, t) : Text.param) : Binary.param =
  (name, rewrite_val_type t)

let rewrite_param_type (pt : Text.param_type) : Binary.param_type =
  List.map rewrite_param pt

let rewrite_result_type (rt : Text.result_type) : Binary.result_type =
  List.map rewrite_val_type rt

let rewrite_func_type ((pt, rt) : Text.func_type) : Binary.func_type =
  let pt = rewrite_param_type pt in
  let rt = rewrite_result_type rt in
  (pt, rt)

let rewrite_nn : Text.nn -> Binary.nn = function S32 -> S32 | S64 -> S64

let rewrite_ishape : Text.ishape -> Binary.ishape = function
  | I8x16 -> I8x16
  | I16x8 -> I16x8
  | I32x4 -> I32x4
  | I64x2 -> I64x2

let rewrite_sx : Text.sx -> Binary.sx = function U -> U | S -> S

let rewrite_iunop : Text.iunop -> Binary.iunop = function
  | Clz -> Clz
  | Ctz -> Ctz
  | Popcnt -> Popcnt

let rewrite_funop : Text.funop -> Binary.funop = function
  | Abs -> Abs
  | Neg -> Neg
  | Sqrt -> Sqrt
  | Ceil -> Ceil
  | Floor -> Floor
  | Trunc -> Trunc
  | Nearest -> Nearest

let rewrite_vibinop : Text.vibinop -> Binary.vibinop = function
  | Add -> Add
  | Sub -> Sub

let rewrite_ibinop : Text.ibinop -> Binary.ibinop = function
  | Add -> Add
  | Sub -> Sub
  | Mul -> Mul
  | Div sx -> Div (rewrite_sx sx)
  | Rem sx -> Rem (rewrite_sx sx)
  | And -> And
  | Or -> Or
  | Xor -> Xor
  | Shl -> Shl
  | Shr sx -> Shr (rewrite_sx sx)
  | Rotl -> Rotl
  | Rotr -> Rotr

let rewrite_fbinop : Text.fbinop -> Binary.fbinop = function
  | Add -> Add
  | Sub -> Sub
  | Mul -> Mul
  | Div -> Div
  | Min -> Min
  | Max -> Max
  | Copysign -> Copysign

let rewrite_itestop : Text.itestop -> Binary.itestop = function Eqz -> Eqz

let rewrite_irelop : Text.irelop -> Binary.irelop = function
  | Eq -> Eq
  | Ne -> Ne
  | Lt sx -> Lt (rewrite_sx sx)
  | Gt sx -> Gt (rewrite_sx sx)
  | Le sx -> Le (rewrite_sx sx)
  | Ge sx -> Ge (rewrite_sx sx)

let rewrite_frelop : Text.frelop -> Binary.frelop = function
  | Eq -> Eq
  | Ne -> Ne
  | Lt -> Lt
  | Gt -> Gt
  | Le -> Le
  | Ge -> Ge

let rewrite_memarg : Text.memarg -> Binary.memarg = function
  | { offset; align } -> { offset; align }

let rewrite_limits : Text.limits -> Binary.limits = function
  | { min; max } -> { min; max }

let rewrite_mem ((name, limits) : Text.mem) : Binary.mem =
  (name, rewrite_limits limits)

let rewrite_block_type (typemap : Binary.indice TypeMap.t) (modul : Assigned.t)
  (block_type : Text.block_type) : Binary.block_type Result.t =
  match block_type with
  | Bt_ind id -> begin
    let* v = Assigned.find_type modul id in
    match List.nth_opt modul.typ.values v with
    | None -> Error (`Unknown_type id)
    | Some v ->
      let t' = Indexed.get v |> rewrite_func_type in
      let idx = Indexed.get_index v in
      Ok (Binary.Bt_raw (Some idx, t'))
  end
  | Bt_raw (_, func_type) ->
    let func_type = rewrite_func_type func_type in
    let idx =
      match TypeMap.find_opt func_type typemap with
      | None -> assert false
      | Some idx -> idx
    in
    Ok (Binary.Bt_raw (Some idx, func_type))

let rewrite_mut = function Text.Const -> Binary.Const | Var -> Var

let rewrite_global_type (mut, t) =
  let mut = rewrite_mut mut in
  let t = rewrite_val_type t in
  (mut, t)

let rewrite_table_type ((limits, ref_type) : Text.table_type) :
  Binary.table_type =
  let limits = rewrite_limits limits in
  let ref_type = rewrite_ref_type ref_type in
  (limits, ref_type)

let rewrite_table ((name, typ) : Text.table) : Binary.table =
  let typ = rewrite_table_type typ in
  (name, typ)

let rewrite_expr (typemap : Binary.indice TypeMap.t) (modul : Assigned.t)
  (locals : Binary.param list) (iexpr : Text.expr Annotated.t) :
  Binary.expr Annotated.t Result.t =
  (* block_ids handling *)
  let block_id_to_raw (loop_count, block_ids) id =
    let* id =
      match id with
      | Text.Text id -> begin
        match
          List.find_index
            (function Some id' -> String.equal id id' | None -> false)
            block_ids
        with
        | None -> Error (`Unknown_label (Text.Text id))
        | Some id -> Ok id
      end
      | Raw id -> Ok id
    in
    (* this is > and not >= because you can `br 0` without any block to target the function *)
    if id > List.length block_ids + loop_count then
      Error (`Unknown_label (Text.Raw id))
    else Ok id
  in

  (* block_types handling *)
  let block_ty_opt_rewrite = function
    | Some bt ->
      let+ bt = rewrite_block_type typemap modul bt in
      Some bt
    | None -> Ok None
  in

  let* locals, _after_last_assigned_local =
    list_fold_left
      (fun (locals, next_free_int) ((name, _type) : Binary.param) ->
        match name with
        | None -> Ok (locals, next_free_int + 1)
        | Some name ->
          if String_map.mem name locals then Error (`Duplicate_local name)
          else Ok (String_map.add name next_free_int locals, next_free_int + 1) )
      (String_map.empty, 0) locals
  in

  let find_local : Text.indice -> Binary.indice = function
    | Raw i -> i
    | Text name -> (
      match String_map.find_opt name locals with
      | None -> assert false
      | Some id -> id )
  in

  let rec body (loop_count, block_ids) (instr : Text.instr Annotated.t) :
    Binary.instr Result.t =
    match instr.Annotated.raw with
    | Br_table (ids, id) ->
      let block_id_to_raw = block_id_to_raw (loop_count, block_ids) in
      let* ids = array_map block_id_to_raw ids in
      let+ id = block_id_to_raw id in
      Binary.Br_table (ids, id)
    | Br_if id ->
      let+ id = block_id_to_raw (loop_count, block_ids) id in
      Binary.Br_if id
    | Br id ->
      let+ id = block_id_to_raw (loop_count, block_ids) id in
      Binary.Br id
    | Call id ->
      let+ id = Assigned.find_func modul id in
      Binary.Call id
    | Return_call id ->
      let+ id = Assigned.find_func modul id in
      Binary.Return_call id
    | Local_set id ->
      let id = find_local id in
      Ok (Binary.Local_set id)
    | Local_get id ->
      let id = find_local id in
      Ok (Binary.Local_get id)
    | Local_tee id ->
      let id = find_local id in
      Ok (Binary.Local_tee id)
    | If_else (id, bt, e1, e2) ->
      let* bt = block_ty_opt_rewrite bt in
      let block_ids = id :: block_ids in
      let* e1 = expr e1 (loop_count, block_ids) in
      let+ e2 = expr e2 (loop_count, block_ids) in
      Binary.If_else (id, bt, e1, e2)
    | Loop (id, bt, e) ->
      let* bt = block_ty_opt_rewrite bt in
      let+ e = expr e (loop_count + 1, id :: block_ids) in
      Binary.Loop (id, bt, e)
    | Block (id, bt, e) ->
      let* bt = block_ty_opt_rewrite bt in
      let+ e = expr e (loop_count, id :: block_ids) in
      Binary.Block (id, bt, e)
    | Call_indirect (tbl_i, bt) ->
      let* tbl_i = Assigned.find_table modul tbl_i in
      let+ bt = rewrite_block_type typemap modul bt in
      Binary.Call_indirect (tbl_i, bt)
    | Return_call_indirect (tbl_i, bt) ->
      let* tbl_i = Assigned.find_table modul tbl_i in
      let+ bt = rewrite_block_type typemap modul bt in
      Binary.Return_call_indirect (tbl_i, bt)
    | Call_ref t ->
      let+ t = Assigned.find_type modul t in
      Binary.Call_ref t
    | Return_call_ref bt ->
      let+ bt = rewrite_block_type typemap modul bt in
      Binary.Return_call_ref bt
    | Global_set id ->
      let+ idx = Assigned.find_global modul id in
      Binary.Global_set idx
    | Global_get id ->
      let+ idx = Assigned.find_global modul id in
      Binary.Global_get idx
    | Ref_func id ->
      let+ id = Assigned.find_func modul id in
      Binary.Ref_func id
    | Table_size id ->
      let+ id = Assigned.find_table modul id in
      Binary.Table_size id
    | Table_get id ->
      let+ id = Assigned.find_table modul id in
      Binary.Table_get id
    | Table_set id ->
      let+ id = Assigned.find_table modul id in
      Binary.Table_set id
    | Table_grow id ->
      let+ id = Assigned.find_table modul id in
      Binary.Table_grow id
    | Table_init (i, i') ->
      let* table = Assigned.find_table modul i in
      let+ elem = Assigned.find_elem modul i' in
      Binary.Table_init (table, elem)
    | Table_fill id ->
      let+ id = Assigned.find_table modul id in
      Binary.Table_fill id
    | Table_copy (i, i') ->
      let* table = Assigned.find_table modul i in
      let+ table' = Assigned.find_table modul i' in
      Binary.Table_copy (table, table')
    | Memory_init id ->
      let+ id = Assigned.find_data modul id in
      Binary.Memory_init id
    | Data_drop id ->
      let+ id = Assigned.find_data modul id in
      Binary.Data_drop id
    | Elem_drop id ->
      let+ id = Assigned.find_elem modul id in
      Binary.Elem_drop id
    | Select typ -> begin
      match typ with
      | None -> Ok (Binary.Select None)
      | Some [ t ] -> Ok (Binary.Select (Some [ rewrite_val_type t ]))
      | Some [] | Some (_ :: _ :: _) -> Error `Invalid_result_arity
    end
    | I_unop (nn, op) ->
      let nn = rewrite_nn nn in
      let op = rewrite_iunop op in
      Ok (Binary.I_unop (nn, op))
    | I_binop (nn, op) ->
      let nn = rewrite_nn nn in
      let op = rewrite_ibinop op in
      Ok (I_binop (nn, op))
    | I_testop (nn, op) ->
      let nn = rewrite_nn nn in
      let op = rewrite_itestop op in
      Ok (Binary.I_testop (nn, op))
    | I_relop (nn, op) ->
      let nn = rewrite_nn nn in
      let op = rewrite_irelop op in
      Ok (I_relop (nn, op))
    | F_unop (nn, op) ->
      let nn = rewrite_nn nn in
      let op = rewrite_funop op in
      Ok (Binary.F_unop (nn, op))
    | F_relop (nn, op) ->
      let nn = rewrite_nn nn in
      let op = rewrite_frelop op in
      Ok (F_relop (nn, op))
    | I32_wrap_i64 -> Ok Binary.I32_wrap_i64
    | F_reinterpret_i (nn1, nn2) ->
      let nn1 = rewrite_nn nn1 in
      let nn2 = rewrite_nn nn2 in
      Ok (F_reinterpret_i (nn1, nn2))
    | I_reinterpret_f (nn1, nn2) ->
      let nn1 = rewrite_nn nn1 in
      let nn2 = rewrite_nn nn2 in
      Ok (I_reinterpret_f (nn1, nn2))
    | I64_extend_i32 sx ->
      let sx = rewrite_sx sx in
      Ok (Binary.I64_extend_i32 sx)
    | I64_extend32_s -> Ok Binary.I64_extend32_s
    | F32_demote_f64 -> Ok Binary.F32_demote_f64
    | I_extend8_s nn ->
      let nn = rewrite_nn nn in
      Ok (I_extend8_s nn)
    | I_extend16_s nn ->
      let nn = rewrite_nn nn in
      Ok (I_extend16_s nn)
    | F64_promote_f32 -> Ok Binary.F64_promote_f32
    | F_convert_i (nn1, nn2, sx) ->
      let nn1 = rewrite_nn nn1 in
      let nn2 = rewrite_nn nn2 in
      let sx = rewrite_sx sx in
      Ok (Binary.F_convert_i (nn1, nn2, sx))
    | I_trunc_f (nn1, nn2, sx) ->
      let nn1 = rewrite_nn nn1 in
      let nn2 = rewrite_nn nn2 in
      let sx = rewrite_sx sx in
      Ok (Binary.I_trunc_f (nn1, nn2, sx))
    | I_trunc_sat_f (nn1, nn2, sx) ->
      let nn1 = rewrite_nn nn1 in
      let nn2 = rewrite_nn nn2 in
      let sx = rewrite_sx sx in
      Ok (Binary.I_trunc_sat_f (nn1, nn2, sx))
    | Ref_is_null -> Ok Binary.Ref_is_null
    | F_binop (nn, op) ->
      let nn = rewrite_nn nn in
      let op = rewrite_fbinop op in
      Ok (Binary.F_binop (nn, op))
    | F32_const v -> Ok (Binary.F32_const v)
    | F64_const v -> Ok (Binary.F64_const v)
    | I32_const v -> Ok (Binary.I32_const v)
    | I64_const v -> Ok (Binary.I64_const v)
    | V128_const v -> Ok (Binary.V128_const v)
    | Unreachable -> Ok Binary.Unreachable
    | Drop -> Ok Binary.Drop
    | Nop -> Ok Binary.Nop
    | Return -> Ok Binary.Return
    | Extern_externalize -> Ok Binary.Extern_externalize
    | Extern_internalize -> Ok Binary.Extern_internalize
    | I_load8 (nn, sx, memarg) ->
      let nn = rewrite_nn nn in
      let sx = rewrite_sx sx in
      let memarg = rewrite_memarg memarg in
      Ok (Binary.I_load8 (nn, sx, memarg))
    | I_store8 (nn, memarg) ->
      let nn = rewrite_nn nn in
      let memarg = rewrite_memarg memarg in
      Ok (Binary.I_store8 (nn, memarg))
    | I_load16 (nn, sx, memarg) ->
      let nn = rewrite_nn nn in
      let sx = rewrite_sx sx in
      let memarg = rewrite_memarg memarg in
      Ok (Binary.I_load16 (nn, sx, memarg))
    | I_store16 (nn, memarg) ->
      let nn = rewrite_nn nn in
      let memarg = rewrite_memarg memarg in
      Ok (Binary.I_store16 (nn, memarg))
    | I64_load32 (sx, memarg) ->
      let sx = rewrite_sx sx in
      let memarg = rewrite_memarg memarg in
      Ok (Binary.I64_load32 (sx, memarg))
    | I64_store32 memarg ->
      let memarg = rewrite_memarg memarg in
      Ok (Binary.I64_store32 memarg)
    | I_load (nn, memarg) ->
      let nn = rewrite_nn nn in
      let memarg = rewrite_memarg memarg in
      Ok (Binary.I_load (nn, memarg))
    | F_load (nn, memarg) ->
      let nn = rewrite_nn nn in
      let memarg = rewrite_memarg memarg in
      Ok (Binary.F_load (nn, memarg))
    | F_store (nn, memarg) ->
      let nn = rewrite_nn nn in
      let memarg = rewrite_memarg memarg in
      Ok (Binary.F_store (nn, memarg))
    | I_store (nn, memarg) ->
      let nn = rewrite_nn nn in
      let memarg = rewrite_memarg memarg in
      Ok (Binary.I_store (nn, memarg))
    | Memory_copy -> Ok Binary.Memory_copy
    | Memory_size -> Ok Binary.Memory_size
    | Memory_fill -> Ok Binary.Memory_fill
    | Memory_grow -> Ok Binary.Memory_grow
    | V_ibinop (shape, op) ->
      let shape = rewrite_ishape shape in
      let op = rewrite_vibinop op in
      Ok (Binary.V_ibinop (shape, op))
    | Ref_null t ->
      let t = rewrite_heap_type t in
      Ok (Binary.Ref_null t)
  and expr (e : Text.expr Annotated.t) (loop_count, block_ids) :
    Binary.expr Annotated.t Result.t =
    let+ e =
      list_map
        (fun i ->
          let+ i = body (loop_count, block_ids) i in
          Annotated.dummy i )
        e.Annotated.raw
    in
    Annotated.dummy e
  in
  expr iexpr (0, [])

let rewrite_global (typemap : Binary.indice TypeMap.t) (modul : Assigned.t)
  (global : Text.global) : Binary.global Result.t =
  let+ init = rewrite_expr typemap modul [] global.init in
  let typ = rewrite_global_type global.typ in
  { Binary.id = global.id; init; typ }

let rewrite_elem (typemap : Binary.indice TypeMap.t) (modul : Assigned.t)
  (elem : Text.elem) : Binary.elem Result.t =
  let* (mode : Binary.elem_mode) =
    match elem.mode with
    | Elem_declarative -> Ok Binary.Elem_declarative
    | Elem_passive -> Ok Elem_passive
    | Elem_active (None, _expr) -> assert false
    | Elem_active (Some id, expr) ->
      let* indice = Assigned.find_table modul id in
      let+ expr = rewrite_expr typemap modul [] expr in
      Binary.Elem_active (Some indice, expr)
  in
  let+ init = list_map (rewrite_expr typemap modul []) elem.init in
  let typ = rewrite_ref_type elem.typ in
  { Binary.init; mode; id = elem.id; typ }

let rewrite_data (typemap : Binary.indice TypeMap.t) (modul : Assigned.t)
  (data : Text.data) : Binary.data Result.t =
  let+ mode =
    match data.mode with
    | Data_passive -> Ok Binary.Data_passive
    | Data_active (None, _expr) -> assert false
    | Data_active (Some indice, expr) ->
      let* indice = Assigned.find_memory modul indice in
      let+ expr = rewrite_expr typemap modul [] expr in
      Binary.Data_active (indice, expr)
  in
  { Binary.mode; id = data.id; init = data.init }

let rewrite_export named (exports : Grouped.opt_export list) :
  Binary.named_export list Result.t =
  list_map
    (fun { Grouped.name; id } ->
      let+ id =
        match id with
        | Text.Raw i -> Ok i
        | Text name -> (
          match String_map.find_opt name named.Named.named with
          | None -> Error (`Unknown_export id)
          | Some i -> Ok i )
      in

      { Binary.name; id } )
    exports

let rewrite_exports (modul : Assigned.t) (exports : Grouped.opt_exports) :
  Binary.exports Result.t =
  let* global = rewrite_export modul.global exports.global in
  let* mem = rewrite_export modul.mem exports.mem in
  let* table = rewrite_export modul.table exports.table in
  let+ func = rewrite_export modul.func exports.func in
  { Binary.global; mem; table; func }

let rewrite_func (typemap : Binary.indice TypeMap.t) (modul : Assigned.t)
  ({ id; type_f; locals; body; _ } : Text.func) : Binary.func Result.t =
  let* (Bt_raw (_, (params, _)) as type_f) =
    rewrite_block_type typemap modul type_f
  in
  let locals = List.map rewrite_param locals in
  let+ body = rewrite_expr typemap modul (params @ locals) body in
  { Binary.body; type_f; id; locals }

let rewrite_import (f : 'a -> 'b Result.t) (import : 'a Imported.t) :
  'b Imported.t Result.t =
  let+ desc = f import.desc in
  { import with desc }

let rewrite_import_no_failure (f : 'a -> 'b) (import : 'a Imported.t) :
  'b Imported.t =
  let desc = f import.desc in
  { import with desc }

let rewrite_runtime f g r =
  match r with
  | Runtime.Local v ->
    let+ v = f v in
    Runtime.Local v
  | Imported i ->
    let+ i = g i in
    Runtime.Imported i

let rewrite_runtime_no_failure f g r =
  match r with
  | Runtime.Local v ->
    let v = f v in
    Runtime.Local v
  | Imported i ->
    let i = g i in
    Runtime.Imported i

let rewrite_named f named =
  let+ values =
    list_map
      (fun ind ->
        let index = Indexed.get_index ind in
        let value = Indexed.get ind in
        let+ value = f value in
        Indexed.return index value )
      named.Named.values
  in
  Named.create values named.named

let rewrite_named_no_failure f named =
  let values =
    List.map
      (fun ind ->
        let index = Indexed.get_index ind in
        let value = Indexed.get ind in
        let value = f value in
        Indexed.return index value )
      named.Named.values
  in
  Named.create values named.named

let rewrite_types (_modul : Assigned.t) (t : Binary.func_type) :
  Binary.type_def Result.t =
  Ok (None, t)

let modul (modul : Assigned.t) : Binary.Module.t Result.t =
  Log.debug (fun m -> m "rewriting    ...");
  let modul_typ = rewrite_named_no_failure rewrite_func_type modul.typ in
  let typemap = typemap modul_typ in
  let* global =
    let+ { Named.named; values } =
      rewrite_named
        (rewrite_runtime
           (rewrite_global typemap modul)
           (rewrite_import (fun x -> Ok (rewrite_global_type x))) )
        modul.global
    in
    let values = List.rev values in
    Named.create values named
  in
  let* elem = rewrite_named (rewrite_elem typemap modul) modul.elem in
  let* data = rewrite_named (rewrite_data typemap modul) modul.data in
  let* exports = rewrite_exports modul modul.exports in
  let* func =
    let import = rewrite_import (rewrite_block_type typemap modul) in
    let runtime = rewrite_runtime (rewrite_func typemap modul) import in
    rewrite_named runtime modul.func
  in
  let* types = rewrite_named (rewrite_types modul) modul_typ in
  let mem =
    let import = rewrite_import_no_failure rewrite_limits in
    let runtime = rewrite_runtime_no_failure rewrite_mem import in
    rewrite_named_no_failure runtime modul.mem
  in
  let table =
    let import = rewrite_import_no_failure rewrite_table_type in
    let runtime = rewrite_runtime_no_failure rewrite_table import in
    rewrite_named_no_failure runtime modul.table
  in
  let+ start =
    match modul.start with
    | None -> Ok None
    | Some id ->
      let+ id = Assigned.find_func modul id in
      Some id
  in
  let custom = [] in

  let id = modul.id in
  let mem = Named.to_array mem in
  let table = Named.to_array table in
  let types = Named.to_array types in
  let global = Named.to_array global in
  let elem = Named.to_array elem in
  let data = Named.to_array data in
  let func = Named.to_array func in

  { Binary.Module.id
  ; mem
  ; table
  ; types
  ; global
  ; elem
  ; data
  ; exports
  ; func
  ; start
  ; custom
  }