1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
(* SPDX-License-Identifier: AGPL-3.0-or-later *)
(* Copyright © 2021-2024 OCamlPro *)
(* Written by the Owi programmers *)
open Syntax
module Choice = Concolic.P.Choice
(* let () = Random.self_init () *)
let () = Random.init 42
(* TODO: add a flag for this *)
let print_paths = false
let ( let** ) (t : 'a Result.t Choice.t) (f : 'a -> 'b Result.t Choice.t) :
'b Result.t Choice.t =
Choice.bind t (fun t ->
match t with Error e -> Choice.return (Error e) | Ok x -> f x )
let simplify_then_link ~unsafe ~rac ~srac ~optimize link_state m =
let* m =
match m with
| Kind.Wat _ | Wasm _ ->
Compile.Any.until_binary_validate ~unsafe ~rac ~srac m
| Wast _ -> Error (`Msg "can't run concolic interpreter on a script")
| Ocaml _ -> assert false
in
let* m = Cmd_utils.add_main_as_start m in
let+ m, link_state =
Compile.Binary.until_link ~unsafe ~optimize ~name:None link_state m
in
let module_to_run = Concolic.convert_module_to_run m in
(link_state, module_to_run)
let simplify_then_link_files ~unsafe ~rac ~srac ~optimize filenames =
let link_state = Link.empty_state in
let link_state =
Link.extern_module' link_state ~name:"symbolic"
~func_typ:Concolic.P.Extern_func.extern_type
Concolic_wasm_ffi.symbolic_extern_module
in
let link_state =
Link.extern_module' link_state ~name:"summaries"
~func_typ:Concolic.P.Extern_func.extern_type
Concolic_wasm_ffi.summaries_extern_module
in
let+ link_state, modules_to_run =
List.fold_left
(fun (acc : (_ * _) Result.t) filename ->
let* link_state, modules_to_run = acc in
let* m0dule = Parse.guess_from_file filename in
let+ link_state, module_to_run =
simplify_then_link ~unsafe ~rac ~srac ~optimize link_state m0dule
in
(link_state, module_to_run :: modules_to_run) )
(Ok (link_state, []))
filenames
in
(link_state, List.rev modules_to_run)
let run_modules_to_run (link_state : _ Link.state) modules_to_run =
List.fold_left
(fun (acc : unit Result.t Concolic.P.Choice.t) to_run ->
let** () = acc in
(Interpret.Concolic.modul link_state.envs) to_run )
(Choice.return (Ok ())) modules_to_run
type end_of_trace =
| Assume_fail
| Assert_fail
| Trap of Trap.t
| Normal
type trace =
{ assignments : Concolic_choice.assignments
; remaining_pc : Concolic_choice.pc_elt list
; end_of_trace : end_of_trace
}
module IMap = Map.Make (Prelude.Int32)
module Unexplored : sig
type t
val none : t -> bool
val zero : t
val one : t
val add : t -> t -> t
end = struct
type t = int
let none t = t = 0
let zero = 0
let one = 1
let add a b = a + b
end
type unexplored = Unexplored.t
type assert_status =
| Unknown
| Valid
| Invalid of Concolic_choice.assignments
type node =
| Select of
{ cond : Smtml.Expr.t
; if_true : eval_tree
; if_false : eval_tree
}
| Select_i32 of
{ value : Smtml.Expr.t
; branches : eval_tree IMap.t
}
| Assume of
{ cond : Smtml.Expr.t
; cont : eval_tree
}
| Assert of
{ cond : Smtml.Expr.t
; cont : eval_tree
; mutable status : assert_status
}
| Unreachable
| Not_explored (** A node was discovered but has not yet been explored *)
| Being_explored
(** A node that has been seen in `find_node_to_run` and is being explored *)
| Explored (** A fully explored path *)
and eval_tree =
{ mutable node : node
; mutable unexplored : unexplored
; pc : Choice.pc
; mutable ends : (end_of_trace * Concolic_choice.assignments) list
}
let pp_node fmt = function
| Select _ -> Fmt.string fmt "Select"
| Select_i32 _ -> Fmt.string fmt "Select_i32"
| Assume _ -> Fmt.string fmt "Assume"
| Assert _ -> Fmt.string fmt "Assert"
| Unreachable -> Fmt.string fmt "Unreachable"
| Not_explored -> Fmt.string fmt "Not_explored"
| Being_explored -> Fmt.string fmt "Being_explored"
| Explored -> Fmt.string fmt "Explored"
let _ = pp_node
let count_unexplored (tree : eval_tree) : Unexplored.t =
match tree.node with
| Select { if_true; if_false; _ } ->
Unexplored.add if_true.unexplored if_false.unexplored
| Select_i32 { branches; _ } ->
IMap.fold
(fun _ branch -> Unexplored.add branch.unexplored)
branches Unexplored.zero
| Assume { cont; _ } | Assert { cont; _ } -> cont.unexplored
| Unreachable | Being_explored | Explored -> Unexplored.zero
| Not_explored -> Unexplored.one
let update_unexplored tree = tree.unexplored <- count_unexplored tree
let update_node (tree : eval_tree) (node : node) : unit =
tree.node <- node;
update_unexplored tree
let fresh_tree (pc : Choice.pc) : eval_tree =
{ node = Not_explored; unexplored = Unexplored.one; pc; ends = [] }
let new_node (pc : Choice.pc) (head : Choice.pc_elt) : node =
match head with
| Select (cond, _) ->
Select
{ cond
; if_true = fresh_tree (Select (cond, true) :: pc)
; if_false = fresh_tree (Select (cond, false) :: pc)
}
| Select_i32 (value, _) -> Select_i32 { value; branches = IMap.empty }
| Assume cond -> Assume { cond; cont = fresh_tree (Assume cond :: pc) }
| Assert cond ->
Assert { cond; cont = fresh_tree (Assert cond :: pc); status = Unknown }
let try_initialize (pc : Choice.pc) (node : eval_tree) (head : Choice.pc_elt) =
match node.node with
| Not_explored | Being_explored -> update_node node (new_node pc head)
| _ -> ()
let check = true
let set_on_unexplored tree transition =
match tree.node with
| Not_explored | Being_explored -> tree.node <- transition
| _ -> assert false (* Sanity Check *)
let rec add_trace (pc : Choice.pc) (node : eval_tree) (trace : trace)
(to_update : eval_tree list) : eval_tree list =
match trace.remaining_pc with
| [] -> begin
node.ends <- (trace.end_of_trace, trace.assignments) :: node.ends;
( match trace.end_of_trace with
| Normal -> set_on_unexplored node Explored
| Assume_fail ->
(* TODO: do something in this case? Otherwise, it might remain in Being_explored in unsat paths? *)
()
| Trap Unreachable -> set_on_unexplored node Unreachable
| Trap _ | Assert_fail ->
(* TODO: Mark this as explored to avoid possibly empty pcs? *)
() );
node :: to_update
end
| head_of_trace :: tail_of_trace -> (
try_initialize pc node head_of_trace;
let pc = head_of_trace :: pc in
match (node.node, head_of_trace) with
| (Unreachable | Not_explored | Being_explored | Explored), _ ->
assert false
| Select { cond; if_true; if_false }, Select (cond', v) ->
if check then assert (Smtml.Expr.equal cond cond');
let branch = if v then if_true else if_false in
add_trace pc branch
{ trace with remaining_pc = tail_of_trace }
(node :: to_update)
| _, Select _ | Select _, _ -> assert false
| Select_i32 { value; branches }, Select_i32 (value', v) ->
if check then assert (Smtml.Expr.equal value value');
let branch =
match IMap.find_opt v branches with
| None ->
let t = fresh_tree pc in
update_node node
(Select_i32 { value; branches = IMap.add v t branches });
t
| Some t -> t
in
add_trace pc branch
{ trace with remaining_pc = tail_of_trace }
(node :: to_update)
| _, Select_i32 _ | Select_i32 _, _ -> assert false
| Assume { cond; cont }, Assume cond' ->
if check then assert (Smtml.Expr.equal cond cond');
add_trace pc cont
{ trace with remaining_pc = tail_of_trace }
(node :: to_update)
| _, Assume _ | Assume _, _ -> assert false
| Assert ({ cond; cont; status = _ } as assert_), Assert cond' ->
if check then assert (Smtml.Expr.equal cond cond');
( match (tail_of_trace, trace.end_of_trace) with
| [], Assert_fail -> assert_.status <- Invalid trace.assignments
| _ -> () );
add_trace pc cont
{ trace with remaining_pc = tail_of_trace }
(node :: to_update) )
let add_trace tree trace =
let to_update = add_trace [] tree trace [] in
List.iter update_unexplored to_update
let run_once link_state modules_to_run (forced_values : Smtml.Model.t) =
let backups = List.map Concolic.backup modules_to_run in
let result = run_modules_to_run link_state modules_to_run in
let ( result
, Choice.
{ pc
; symbols = _
; symbols_value
; shared = _
; preallocated_values = _
} ) =
Choice.run forced_values result
in
let () = List.iter2 Concolic.recover backups modules_to_run in
let+ end_of_trace =
match result with
| Ok (Ok ()) -> Ok Normal
| Ok (Error _ as e) -> e
| Error (Trap t) -> Ok (Trap t)
| Error Assert_fail -> Ok Assert_fail
| Error (Assume_fail _c) -> Ok Assume_fail
in
let trace =
{ assignments = symbols_value; remaining_pc = List.rev pc; end_of_trace }
in
(result, trace)
(* Very naive ! *)
let find_node_to_run tree =
let ( let* ) = Option.bind in
let rec loop tree to_update =
match tree.node with
| Not_explored ->
Log.debug2 "Try unexplored@.%a@." Concolic_choice.pp_pc tree.pc;
Some (tree.pc, tree :: to_update)
| Select { cond = _; if_true; if_false } ->
let* b =
match
( Unexplored.none if_true.unexplored
, Unexplored.none if_false.unexplored )
with
| true, false -> Some false (* Unexplored paths in `else` branch *)
| false, true -> Some true (* Unexplored paths in `then` branch *)
| false, false -> Some (Random.bool ()) (* Unexplored in both *)
| true, true -> None (* No unexplored remain *)
in
Log.debug1 "Select bool %b@." b;
loop (if b then if_true else if_false) (tree :: to_update)
| Select_i32 { value = _; branches } ->
(* TODO: better ! *)
let branches = IMap.bindings branches in
let branches =
List.filter (fun (_i, v) -> not (Unexplored.none v.unexplored)) branches
in
let n = List.length branches in
if n = 0 then None
else begin
let i = Random.int n in
let i, branch = List.nth branches i in
Log.debug1 "Select_i32 %li@." i;
loop branch (tree :: to_update)
end
| Assume { cond = _; cont } -> loop cont (tree :: to_update)
| Assert { cond; cont = _; status = Unknown } ->
let pc : Concolic_choice.pc = Select (cond, false) :: tree.pc in
Log.debug2 "Try Assert@.%a@.@." Concolic_choice.pp_pc pc;
Some (pc, tree :: to_update)
| Assert { cond = _; cont; status = _ } -> loop cont (tree :: to_update)
| Unreachable ->
Log.debug2 "Unreachable (Retry)@.%a@." Concolic_choice.pp_pc tree.pc;
None
| Being_explored | Explored -> None
in
loop tree []
let pc_model solver pc =
let pc = Concolic_choice.pc_to_exprs pc in
match Solver.check solver pc with
| `Unsat | `Unknown -> None
| `Sat ->
let symbols = Some (Smtml.Expr.get_symbols pc) in
Some (Solver.model ~symbols ~pc solver)
let rec find_model_to_run solver tree =
let ( let* ) = Option.bind in
let* pc, to_update = find_node_to_run tree in
let node = List.hd to_update in
let model =
match pc with
| [] -> assert false
| pc -> (
match pc_model solver pc with
| None ->
( match node.node with
| Not_explored -> node.node <- Unreachable
| Assert assert_ -> assert_.status <- Valid
| _ -> assert false (* Sanity check *) );
find_model_to_run solver tree
| Some model ->
( match node.node with
| Not_explored -> node.node <- Being_explored
| Assert assert_ -> assert_.status <- Invalid [] (* TODO: assignments *)
| _ -> assert false (* Sanity check *) );
Some model )
in
(* Have to update tree because of the paths trimmed above *)
List.iter update_unexplored to_update;
model
let count_path = ref 0
let run solver tree link_state modules_to_run =
(* Initial model is empty (no symbolic variables yet) *)
let initial_model = Hashtbl.create 0 in
let rec loop model =
incr count_path;
let* result, trace = run_once link_state modules_to_run model in
add_trace tree trace;
let* error =
match result with
| Ok (Ok ()) -> Ok None
| Ok (Error _ as e) -> e
| Error (Assume_fail c) -> (
decr count_path;
(* Current path condition led to assume failure, try to satisfy *)
Log.debug2 "Assume_fail: %a@." Smtml.Expr.pp c;
Log.debug2 "Pc:@.%a" Concolic_choice.pp_pc trace.remaining_pc;
Log.debug2 "Assignments:@.%a@."
(Concolic_choice.pp_assignments ~no_value:false)
trace.assignments;
Log.debug0 "Retry !@.";
match pc_model solver (Assume c :: trace.remaining_pc) with
| Some model -> loop model
| None -> Ok None )
| Error (Trap trap) ->
(* TODO: Check if we want to report this *)
Ok (Some (`Trap trap, trace))
| Error Assert_fail ->
(* TODO: Check if we want to report this *)
Ok (Some (`Assert_fail, trace))
in
match error with
| Some _ -> Ok error
| None -> (
(* No error, we can go again if we still have stuff to explore *)
match find_model_to_run solver tree with
| None -> Ok None
| Some model -> loop model )
in
loop initial_model
(* NB: This function propagates potential errors (Result.err) occurring
during evaluation (OS, syntax error, etc.), except for Trap and Assert,
which are handled here. Most of the computations are done in the Result
monad, hence the let*. *)
let cmd ~profiling ~debug ~unsafe ~rac ~srac ~optimize ~workers:_
~no_stop_at_failure:_ ~no_value ~no_assert_failure_expression_printing
~deterministic_result_order:_ ~fail_mode:_ ~(workspace : Fpath.t) ~solver
~files =
if profiling then Log.profiling_on := true;
if debug then Log.debug_on := true;
(* deterministic_result_order implies no_stop_at_failure *)
(* let no_stop_at_failure = deterministic_result_order || no_stop_at_failure in *)
let* _created_dir = Bos.OS.Dir.create ~path:true ~mode:0o755 workspace in
let solver = Solver.fresh solver () in
let* link_state, modules_to_run =
simplify_then_link_files ~unsafe ~rac ~srac ~optimize files
in
let tree = fresh_tree [] in
let* result = run solver tree link_state modules_to_run in
let testcase assignments =
if not no_value then
let testcase : Smtml.Value.t list =
List.map
(fun (_, v) ->
match v with
| Concrete_value.I32 x -> Smtml.Value.Num (I32 x)
| I64 x -> Num (I64 x)
| F32 x -> Num (F32 (Float32.to_bits x))
| F64 x -> Num (F64 (Float64.to_bits x))
| Ref _ -> assert false )
assignments
in
Cmd_utils.write_testcase ~dir:workspace testcase
else Ok ()
in
if print_paths then Fmt.pr "Completed paths: %d@." !count_path;
match result with
| None ->
Fmt.pr "All OK@.";
Ok ()
| Some (`Trap trap, { assignments; _ }) ->
let assignments = List.rev assignments in
Fmt.pr "Trap: %s@\n" (Trap.to_string trap);
Fmt.pr "Model:@\n @[<v>%a@]@."
(Concolic_choice.pp_assignments ~no_value)
assignments;
let* () = testcase assignments in
Error (`Found_bug 1)
| Some (`Assert_fail, { assignments; _ }) ->
let assignments = List.rev assignments in
if no_assert_failure_expression_printing then begin
Fmt.pr "Assert failure@\n"
end
else begin
(* TODO: print the assert failure expression ! *)
Fmt.pr "Assert failure@\n"
end;
Fmt.pr "Model:@\n @[<v>%a@]@."
(Concolic_choice.pp_assignments ~no_value)
assignments;
let* () = testcase assignments in
Error (`Found_bug 1)