1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
(* SPDX-License-Identifier: AGPL-3.0-or-later *)
(* Copyright © 2021-2024 OCamlPro *)
(* Written by the Owi programmers *)
open Types
open Binary
open Spec
open Syntax
type type_env =
{ param_types : binary val_type array
; binder_types : binary val_type array
; global_types : binary val_type array
; result_types : binary val_type array
; binder : int -> binary indice
; result : int -> binary indice
; copy : binary expr
; void_to_i32 : binary indice
; i32_to_i32 : binary indice
; owi_assert : binary indice
}
let build_type_env (m : modul)
(func_ty : binary param_type * binary result_type)
(owi_funcs : (string * int) array) : type_env * modul =
let param_types = Array.of_list (List.map snd (fst func_ty)) in
let binder_types = [||] in
let global_types =
Array.map
(fun (x : (global, binary global_type) Runtime.t) ->
match x with
| Runtime.Local { typ = _, gt; _ } -> gt
| Runtime.Imported { desc = _, gt; _ } -> gt )
m.global
in
let result_types = Array.of_list (snd func_ty) in
let binder i =
Raw (Array.length param_types + Array.length result_types + i)
in
let result i = Raw (Array.length param_types + i + 1) in
let copy =
[ Local_tee (Raw (Array.length param_types))
; Local_get (Raw (Array.length param_types))
]
in
let void_to_i32 =
[ (None, (Final, [], Def_func_t ([], [ Num_type I32 ]))) ]
in
let i32_to_i32 =
[ ( None
, (Final, [], Def_func_t ([ (None, Num_type I32) ], [ Num_type I32 ])) )
]
in
let types = m.types in
let types, void_to_i32 =
match Array.find_index (rec_type_eq void_to_i32) types with
| Some i -> (types, Raw i)
| None -> (Array.append types [| void_to_i32 |], Raw (Array.length types))
in
let types, i32_to_i32 =
match Array.find_index (rec_type_eq i32_to_i32) types with
| Some i -> (types, Raw i)
| None -> (Array.append types [| i32_to_i32 |], Raw (Array.length types))
in
let owi_assert =
match
Array.find_index (fun (name, _) -> String.equal "assert" name) owi_funcs
with
| Some i -> Raw i
| None -> assert false
in
( { param_types
; binder_types
; global_types
; result_types
; binder
; result
; copy
; void_to_i32
; i32_to_i32
; owi_assert
}
, { m with types } )
let prop_true = I32_const (Int32.of_int 1)
let prop_false = I32_const (Int32.of_int 0)
let unop_generate (u : unop) (expr1 : binary expr) (ty1 : binary val_type) :
(binary expr * binary val_type) Result.t =
match u with
| Neg -> (
match ty1 with
| Num_type I32 ->
let expr =
(I32_const (Int32.of_int 0) :: expr1) @ [ I_binop (S32, Sub) ]
in
Ok (expr, Num_type I32)
| Num_type I64 ->
let expr =
(I64_const (Int64.of_int 0) :: expr1) @ [ I_binop (S64, Sub) ]
in
Ok (expr, Num_type I64)
| Num_type F32 ->
let expr =
(F32_const (Float32.of_float 0.) :: expr1) @ [ F_binop (S32, Sub) ]
in
Ok (expr, Num_type F32)
| Num_type F64 ->
let expr =
(F64_const (Float64.of_float 0.) :: expr1) @ [ F_binop (S64, Sub) ]
in
Ok (expr, Num_type F64)
| Ref_type _ -> Error (`Spec_type_error Fmt.(str "%a" pp_unop u)) )
let binop_generate (b : binop) (expr1 : binary expr) (ty1 : binary val_type)
(expr2 : binary expr) (ty2 : binary val_type) :
(binary expr * binary val_type) Result.t =
match b with
| Plus -> (
match (ty1, ty2) with
| Num_type I32, Num_type I32 ->
let expr = expr1 @ expr2 @ [ I_binop (S32, Add) ] in
Ok (expr, Num_type I32)
| Num_type I64, Num_type I64 ->
let expr = expr1 @ expr2 @ [ I_binop (S64, Add) ] in
Ok (expr, Num_type I64)
| Num_type F32, Num_type F32 ->
let expr = expr1 @ expr2 @ [ F_binop (S32, Add) ] in
Ok (expr, Num_type F32)
| Num_type F64, Num_type F64 ->
let expr = expr1 @ expr2 @ [ F_binop (S64, Add) ] in
Ok (expr, Num_type F64)
| _, _ -> Error (`Spec_type_error Fmt.(str "%a" pp_binop b)) )
| Minus -> (
match (ty1, ty2) with
| Num_type I32, Num_type I32 ->
let expr = expr1 @ expr2 @ [ I_binop (S32, Sub) ] in
Ok (expr, Num_type I32)
| Num_type I64, Num_type I64 ->
let expr = expr1 @ expr2 @ [ I_binop (S64, Sub) ] in
Ok (expr, Num_type I64)
| Num_type F32, Num_type F32 ->
let expr = expr1 @ expr2 @ [ F_binop (S32, Sub) ] in
Ok (expr, Num_type F32)
| Num_type F64, Num_type F64 ->
let expr = expr1 @ expr2 @ [ F_binop (S64, Sub) ] in
Ok (expr, Num_type F64)
| _, _ -> Error (`Spec_type_error Fmt.(str "%a" pp_binop b)) )
| Mult -> (
match (ty1, ty2) with
| Num_type I32, Num_type I32 ->
let expr = expr1 @ expr2 @ [ I_binop (S32, Mul) ] in
Ok (expr, Num_type I32)
| Num_type I64, Num_type I64 ->
let expr = expr1 @ expr2 @ [ I_binop (S64, Mul) ] in
Ok (expr, Num_type I64)
| Num_type F32, Num_type F32 ->
let expr = expr1 @ expr2 @ [ F_binop (S32, Mul) ] in
Ok (expr, Num_type F32)
| Num_type F64, Num_type F64 ->
let expr = expr1 @ expr2 @ [ F_binop (S64, Mul) ] in
Ok (expr, Num_type F64)
| _, _ -> Error (`Spec_type_error Fmt.(str "%a" pp_binop b)) )
| Div -> (
match (ty1, ty2) with
| Num_type I32, Num_type I32 ->
let expr = expr1 @ expr2 @ [ I_binop (S32, Div S) ] in
Ok (expr, Num_type I32)
| Num_type I64, Num_type I64 ->
let expr = expr1 @ expr2 @ [ I_binop (S64, Div S) ] in
Ok (expr, Num_type I64)
| Num_type F32, Num_type F32 ->
let expr = expr1 @ expr2 @ [ F_binop (S32, Div) ] in
Ok (expr, Num_type F32)
| Num_type F64, Num_type F64 ->
let expr = expr1 @ expr2 @ [ F_binop (S64, Div) ] in
Ok (expr, Num_type F64)
| _, _ -> Error (`Spec_type_error Fmt.(str "%a" pp_binop b)) )
let rec term_generate tenv (term : binary term) :
(binary expr * binary val_type) Result.t =
match term with
| Int32 i32 -> Ok ([ I32_const i32 ], Num_type I32)
| Int64 i64 -> Ok ([ I64_const i64 ], Num_type I64)
| Float32 f32 -> Ok ([ F32_const f32 ], Num_type F32)
| Float64 f64 -> Ok ([ F64_const f64 ], Num_type F64)
| ParamVar (Raw i as id) ->
if i < 0 || i >= Array.length tenv.param_types then
Error (`Spec_invalid_indice (Int.to_string i))
else Ok ([ Local_get id ], tenv.param_types.(i))
| GlobalVar (Raw i as id) ->
if i < 0 || i >= Array.length tenv.global_types then
Error (`Spec_invalid_indice (Int.to_string i))
else Ok ([ Global_get id ], tenv.global_types.(i))
| BinderVar (Raw i) ->
if i < 0 || i >= Array.length tenv.binder_types then
Error (`Spec_invalid_indice (Int.to_string i))
else Ok ([ Local_get (tenv.binder i) ], tenv.binder_types.(i))
| UnOp (u, tm1) ->
let* expr1, ty1 = term_generate tenv tm1 in
unop_generate u expr1 ty1
| BinOp (b, tm1, tm2) ->
let* expr1, ty1 = term_generate tenv tm1 in
let* expr2, ty2 = term_generate tenv tm2 in
binop_generate b expr1 ty1 expr2 ty2
| Result (Some i) ->
if i < 0 || i >= Array.length tenv.result_types then
Error (`Spec_invalid_indice (Int.to_string i))
else Ok ([ Local_get (tenv.result i) ], tenv.result_types.(i))
| Result None ->
if Array.length tenv.result_types = 0 then Error (`Spec_invalid_indice "0")
else Ok ([ Local_get (tenv.result 0) ], tenv.result_types.(0))
| Memory tm1 -> (
let* expr1, ty1 = term_generate tenv tm1 in
match ty1 with
| Num_type I32 ->
Ok
( expr1
@ [ I_load (S32, { offset = Int32.of_int 0; align = Int32.of_int 0 })
]
, Num_type I32 )
| _ -> Error (`Spec_type_error Fmt.(str "%a" pp_term tm1)) )
let binpred_generate (b : binpred) (expr1 : binary expr) (ty1 : binary val_type)
(expr2 : binary expr) (ty2 : binary val_type) : binary expr Result.t =
match b with
| Ge -> (
match (ty1, ty2) with
| Num_type I32, Num_type I32 -> Ok (expr1 @ expr2 @ [ I_relop (S32, Ge S) ])
| Num_type I64, Num_type I64 -> Ok (expr1 @ expr2 @ [ I_relop (S64, Ge S) ])
| Num_type F32, Num_type F32 -> Ok (expr1 @ expr2 @ [ F_relop (S32, Ge) ])
| Num_type F64, Num_type F64 -> Ok (expr1 @ expr2 @ [ F_relop (S64, Ge) ])
| _, _ -> Error (`Spec_type_error Fmt.(str "%a" pp_binpred b)) )
| Gt -> (
match (ty1, ty2) with
| Num_type I32, Num_type I32 -> Ok (expr1 @ expr2 @ [ I_relop (S32, Gt S) ])
| Num_type I64, Num_type I64 -> Ok (expr1 @ expr2 @ [ I_relop (S64, Gt S) ])
| Num_type F32, Num_type F32 -> Ok (expr1 @ expr2 @ [ F_relop (S32, Gt) ])
| Num_type F64, Num_type F64 -> Ok (expr1 @ expr2 @ [ F_relop (S64, Gt) ])
| _, _ -> Error (`Spec_type_error Fmt.(str "%a" pp_binpred b)) )
| Le -> (
match (ty1, ty2) with
| Num_type I32, Num_type I32 -> Ok (expr1 @ expr2 @ [ I_relop (S32, Le S) ])
| Num_type I64, Num_type I64 -> Ok (expr1 @ expr2 @ [ I_relop (S64, Le S) ])
| Num_type F32, Num_type F32 -> Ok (expr1 @ expr2 @ [ F_relop (S32, Le) ])
| Num_type F64, Num_type F64 -> Ok (expr1 @ expr2 @ [ F_relop (S64, Le) ])
| _, _ -> Error (`Spec_type_error Fmt.(str "%a" pp_binpred b)) )
| Lt -> (
match (ty1, ty2) with
| Num_type I32, Num_type I32 -> Ok (expr1 @ expr2 @ [ I_relop (S32, Lt S) ])
| Num_type I64, Num_type I64 -> Ok (expr1 @ expr2 @ [ I_relop (S64, Lt S) ])
| Num_type F32, Num_type F32 -> Ok (expr1 @ expr2 @ [ F_relop (S32, Lt) ])
| Num_type F64, Num_type F64 -> Ok (expr1 @ expr2 @ [ F_relop (S64, Lt) ])
| _, _ -> Error (`Spec_type_error Fmt.(str "%a" pp_binpred b)) )
| Eq -> (
match (ty1, ty2) with
| Num_type I32, Num_type I32 -> Ok (expr1 @ expr2 @ [ I_relop (S32, Eq) ])
| Num_type I64, Num_type I64 -> Ok (expr1 @ expr2 @ [ I_relop (S64, Eq) ])
| Num_type F32, Num_type F32 -> Ok (expr1 @ expr2 @ [ F_relop (S32, Eq) ])
| Num_type F64, Num_type F64 -> Ok (expr1 @ expr2 @ [ F_relop (S64, Eq) ])
| _, _ -> Error (`Spec_type_error Fmt.(str "%a" pp_binpred b)) )
| Neq -> (
match (ty1, ty2) with
| Num_type I32, Num_type I32 -> Ok (expr1 @ expr2 @ [ I_relop (S32, Ne) ])
| Num_type I64, Num_type I64 -> Ok (expr1 @ expr2 @ [ I_relop (S64, Ne) ])
| Num_type F32, Num_type F32 -> Ok (expr1 @ expr2 @ [ F_relop (S32, Ne) ])
| Num_type F64, Num_type F64 -> Ok (expr1 @ expr2 @ [ F_relop (S64, Ne) ])
| _, _ -> Error (`Spec_type_error Fmt.(str "%a" pp_binpred b)) )
let unconnect_generate (u : unconnect) (expr1 : binary expr) :
binary expr Result.t =
match u with Not -> Ok ((prop_true :: expr1) @ [ I_binop (S32, Xor) ])
let binconnect_generate (b : binconnect) (expr1 : binary expr)
(expr2 : binary expr) : binary expr Result.t =
let bt = Bt_raw (None, ([ (None, Num_type I32) ], [ Num_type I32 ])) in
match b with
| And -> Ok (expr1 @ [ If_else (None, Some bt, expr2, [ prop_false ]) ])
| Or -> Ok (expr1 @ [ If_else (None, Some bt, [ prop_true ], expr2) ])
| Imply -> Ok (expr1 @ [ If_else (None, Some bt, expr2, [ prop_true ]) ])
| Equiv ->
Ok
( expr1
@ [ If_else
(None, Some bt, expr2, (prop_true :: expr2) @ [ I_binop (S32, Xor) ])
] )
let bounded_quantification :
binary prop
-> (binder * binder_type * binary term * binary term * binary prop) Result.t =
function
| Binder (b, ((I32 | I64) as bt), _, pr1) -> (
match pr1 with
| BinConnect
( Imply
, BinConnect
( And
, BinPred (Ge, BinderVar (Raw 0), tm1)
, BinPred (Le, BinderVar (Raw 0), tm2) )
, pr2 ) ->
Ok (b, bt, tm1, tm2, pr2)
| _ -> Error `Unbounded_quantification )
| _ -> Error `Unbounded_quantification
let prop_generate tenv : binary prop -> (type_env * binary expr) Result.t =
let rec prop_generate_aux tenv = function
| Const true -> Ok (tenv, [ prop_true ])
| Const false -> Ok (tenv, [ prop_false ])
| BinPred (b, tm1, tm2) ->
let* expr1, ty1 = term_generate tenv tm1 in
let* expr2, ty2 = term_generate tenv tm2 in
let+ expr = binpred_generate b expr1 ty1 expr2 ty2 in
(tenv, expr)
| UnConnect (u, pr1) ->
let* tenv1, expr1 = prop_generate_aux tenv pr1 in
let+ expr = unconnect_generate u expr1 in
(tenv1, expr)
| BinConnect (b, pr1, pr2) ->
let* tenv1, expr1 = prop_generate_aux tenv pr1 in
let* tenv2, expr2 = prop_generate_aux tenv1 pr2 in
let+ expr = binconnect_generate b expr1 expr2 in
(tenv2, expr)
| Binder _ as pr1 ->
let* b, bt, lower, upper, pr2 = bounded_quantification pr1 in
let* lower, lower_ty = term_generate tenv lower in
let* upper, upper_ty = term_generate tenv upper in
if val_type_eq lower_ty upper_ty && val_type_eq (Num_type bt) lower_ty
then
let tenv =
{ tenv with
binder_types = Array.append [| Num_type bt |] tenv.binder_types
; binder =
(fun i ->
let (Raw i) = tenv.binder i in
Raw (i + 1) )
}
in
let+ tenv, expr1 = prop_generate_aux tenv pr2 in
match b with
| Forall ->
let init = lower @ [ Local_set (tenv.binder 0); prop_true ] in
let incr =
match bt with
| I32 ->
[ Local_get (tenv.binder 0)
; I32_const (Int32.of_int 1)
; I_binop (S32, Add)
; Local_set (tenv.binder 0)
]
| I64 ->
[ Local_get (tenv.binder 0)
; I64_const (Int64.of_int 1)
; I_binop (S64, Add)
; Local_set (tenv.binder 0)
]
| _ -> assert false
in
let check_smaller =
match bt with
| I32 ->
[ Local_get (tenv.binder 0) ] @ upper @ [ I_relop (S32, Le S) ]
| I64 ->
[ Local_get (tenv.binder 0) ] @ upper @ [ I_relop (S64, Le S) ]
| _ -> assert false
in
let loop_body =
expr1
@ [ I_binop (S32, And) ]
@ tenv.copy
@ [ I32_const (Int32.of_int 1); I_binop (S32, Xor); Br_if (Raw 1) ]
@ incr @ check_smaller @ [ Br_if (Raw 0) ]
in
let loop =
[ Loop
( Some "__weasel_loop"
, Some
(Bt_raw
( Some tenv.i32_to_i32
, ([ (None, Num_type I32) ], [ Num_type I32 ]) ) )
, loop_body )
]
in
( tenv
, [ Block
( Some "__weasel_forall"
, Some (Bt_raw (Some tenv.void_to_i32, ([], [ Num_type I32 ])))
, init @ loop )
] )
| Exists ->
let init = lower @ [ Local_set (tenv.binder 0); prop_false ] in
let incr =
match bt with
| I32 ->
[ Local_get (tenv.binder 0)
; I32_const (Int32.of_int 1)
; I_binop (S32, Add)
; Local_set (tenv.binder 0)
]
| I64 ->
[ Local_get (tenv.binder 0)
; I64_const (Int64.of_int 1)
; I_binop (S64, Add)
; Local_set (tenv.binder 0)
]
| _ -> assert false
in
let check_smaller =
match bt with
| I32 ->
[ Local_get (tenv.binder 0) ] @ upper @ [ I_relop (S32, Le S) ]
| I64 ->
[ Local_get (tenv.binder 0) ] @ upper @ [ I_relop (S64, Le S) ]
| _ -> assert false
in
let loop_body =
expr1
@ [ I_binop (S32, Or) ]
@ tenv.copy
@ [ I32_const (Int32.of_int 1); I_binop (S32, Xor); Br_if (Raw 1) ]
@ incr @ check_smaller @ [ Br_if (Raw 0) ]
in
let loop =
[ Loop
( Some "__weasel_loop"
, Some
(Bt_raw
( Some tenv.i32_to_i32
, ([ (None, Num_type I32) ], [ Num_type I32 ]) ) )
, loop_body )
]
in
( tenv
, [ Block
( Some "__weasel_exists"
, Some (Bt_raw (Some tenv.void_to_i32, ([], [ Num_type I32 ])))
, init @ loop )
] )
else Error `Unbounded_quantification
in
fun pr ->
let+ tenv, expr = prop_generate_aux tenv pr in
(tenv, expr @ [ Call tenv.owi_assert ])
let subst_index ?(subst_custom = false) (subst_task : (int * int) list)
(m : modul) : modul =
let subst i =
match List.assoc_opt i subst_task with Some j -> j | None -> i
in
let rec subst_instr (instr : binary instr) : binary instr =
match instr with
| Ref_func (Raw i) -> Ref_func (Raw (subst i))
| Block (str_opt, bt_opt, expr1) -> Block (str_opt, bt_opt, subst_expr expr1)
| Loop (str_opt, bt_opt, expr1) -> Loop (str_opt, bt_opt, subst_expr expr1)
| If_else (str_opt, bt_opt, expr1, expr2) ->
If_else (str_opt, bt_opt, subst_expr expr1, subst_expr expr2)
| Return_call (Raw i) -> Return_call (Raw (subst i))
| Call (Raw i) -> Call (Raw (subst i))
| instr -> instr
and subst_expr (expr : binary expr) = List.map subst_instr expr in
let subst_global (global : (global, binary global_type) Runtime.t) =
match global with
| Runtime.Local { typ; init; id } ->
Runtime.Local { typ; init = subst_expr init; id }
| Imported _ -> global
in
let global = Array.map subst_global m.global in
let subst_func (func : (binary func, binary block_type) Runtime.t) =
match func with
| Runtime.Local { type_f; locals; body; id } ->
Runtime.Local { type_f; locals; body = subst_expr body; id }
| Imported _ -> func
in
let func = Array.map subst_func m.func in
let subst_elem_mode = function
| Elem_passive -> Elem_passive
| Elem_active (int_opt, expr1) -> Elem_active (int_opt, subst_expr expr1)
| Elem_declarative -> Elem_declarative
in
let subst_elem ({ id; typ; init; mode } : elem) =
{ id; typ; init = List.map subst_expr init; mode = subst_elem_mode mode }
in
let elem = Array.map subst_elem m.elem in
let subst_data_mode = function
| Data_passive -> Data_passive
| Data_active (int, expr1) -> Data_active (int, subst_expr expr1)
in
let subst_data ({ id; init; mode } : data) =
{ id; init; mode = subst_data_mode mode }
in
let data = Array.map subst_data m.data in
let subst_export ({ name; id } : export) = { name; id = subst id } in
let exports =
{ m.exports with func = List.map subst_export m.exports.func }
in
let start = match m.start with Some i -> Some (subst i) | None -> None in
let subst_contract
({ Contract.funcid = Raw i; preconditions; postconditions } :
binary Contract.t ) =
{ Contract.funcid = Raw (subst i); preconditions; postconditions }
in
let custom =
if subst_custom then
List.map
(function
| From_annot (Annot.Contract c) ->
From_annot (Contract (subst_contract c))
| _ as c -> c )
m.custom
else m.custom
in
{ id = m.id
; types = m.types
; global
; table = m.table
; mem = m.mem
; func
; elem
; data
; exports
; start
; custom
}
let rec binder_locals = function
| UnConnect (_, pr1) -> binder_locals pr1
| BinConnect (_, pr1, pr2) -> binder_locals pr1 @ binder_locals pr2
| Binder (_, bt, _, pr1) -> Num_type bt :: binder_locals pr1
| _ -> []
let contract_generate (owi_funcs : (string * int) array) (m : modul)
({ funcid = Raw old_index; preconditions; postconditions } : binary Contract.t)
: modul Result.t =
let func_num = Array.length m.func in
let* old_id, Bt_raw (ty_index, old_type) =
if old_index < 0 || old_index >= func_num then
Error (`Contract_unknown_func (Raw old_index))
else
match m.func.(old_index) with
| Runtime.Local { id; type_f; _ } -> (
match id with
| Some name -> Ok (name, type_f)
| None -> Ok (Fmt.str "func_%i" old_index, type_f) )
| Imported { modul; name; assigned_name; desc } -> (
match assigned_name with
| Some assigned_name -> Ok (assigned_name, desc)
| None -> Ok (Fmt.str "func_%s_%s_%i" modul name old_index, desc) )
in
let id = Fmt.str "__weasel_%s" old_id in
let index = func_num in
let tenv, m = build_type_env m old_type owi_funcs in
let locals =
[ (Some "__weasel_temp", Num_type I32) ]
@ List.mapi
(fun i t -> (Some Fmt.(str "__weasel_res_%i" i), t))
(Array.to_list tenv.result_types)
@ List.mapi
(fun i t -> (Some Fmt.(str "__weasel_binder_%i" i), t))
(List.concat (List.map binder_locals (preconditions @ postconditions)))
in
let call =
List.init (Array.length tenv.param_types) (fun i -> Local_get (Raw i))
@ [ Call (Raw old_index) ]
@ List.init (Array.length tenv.result_types) (fun i ->
Local_set (tenv.result i) )
in
let return =
List.init (Array.length tenv.result_types) (fun i ->
Local_get (tenv.result i) )
in
let* tenv, precond_checker =
list_fold_left_map prop_generate tenv preconditions
in
let precond_checker = List.concat precond_checker in
let+ _tenv, postcond_checker =
list_fold_left_map prop_generate tenv postconditions
in
let postcond_checker = List.concat postcond_checker in
let body = precond_checker @ call @ postcond_checker @ return in
let m = subst_index [ (old_index, index) ] m in
let func =
Array.append m.func
[| Runtime.Local
{ type_f = Bt_raw (ty_index, old_type); locals; body; id = Some id }
|]
in
{ m with func }
let contracts_generate (owi_funcs : (string * int) array) (m : modul)
(contracts : binary Contract.t list) : modul Result.t =
let rec join = function
| ([] | [ _ ]) as l -> l
| c1 :: c2 :: l ->
if Contract.compare_funcid c1 c2 <> 0 then c1 :: join (c2 :: l)
else join (Contract.join_contract c1 c2 :: l)
in
(* sort by numerical index and join contracts of a same function *)
let contracts = join (List.sort Contract.compare_funcid contracts) in
list_fold_left (contract_generate owi_funcs) m contracts
let add_owi_funcs (owi_funcs : (string * binary func_type) array) (m : modul) :
modul * (string * int) array =
(* update module field `types` *)
let update_types () : modul * (string * (binary func_type * int)) array =
let func_type2rec_type : binary func_type -> binary rec_type =
fun ty -> [ (None, (Final, [], Def_func_t ty)) ]
in
let owi_funcs : (string * (binary func_type * binary rec_type)) array =
Array.map
(fun (name, ty) -> (name, (ty, func_type2rec_type ty)))
owi_funcs
in
let types, owi_funcs =
Array.fold_left_map
(fun types (name, (owi_ft, owi_rt)) ->
match Array.find_index (fun rt -> rec_type_eq rt owi_rt) types with
| Some index -> (types, (name, (owi_ft, index)))
| None ->
( Array.append types [| owi_rt |]
, (name, (owi_ft, Array.length types)) ) )
m.types owi_funcs
in
({ m with types }, owi_funcs)
in
let m, owi_funcs = update_types () in
(* update module field `func` *)
let update_func () : modul * (string * int) array =
let func = m.func in
let func_num = Array.length func in
let imported, locals =
let i =
Option.fold ~none:func_num ~some:Fun.id
(Array.find_index
(function Runtime.Local _ -> true | Imported _ -> false)
func )
in
(Array.sub func 0 i, Array.sub func i (func_num - i))
in
let owi_funcs =
Array.map
(fun (name, (ft, index)) ->
( name
, { Imported.modul = "symbolic"
; name
; assigned_name = Some name
; desc = Bt_raw (Some (Raw index), ft)
} ) )
owi_funcs
in
let imported =
Array.append imported
(Array.map (fun (_, f) -> Runtime.Imported f) owi_funcs)
in
let func = Array.append imported locals in
let m = { m with func } in
let subst_task =
List.init (Array.length locals) (fun i -> (i, Array.length imported + i))
in
let m = subst_index ~subst_custom:true subst_task m in
let owi_funcs =
Array.mapi
(fun i (name, _) -> (name, Array.length imported + i))
owi_funcs
in
(m, owi_funcs)
in
update_func ()
let generate (_symbolic : bool) (m : modul) : modul Result.t =
let owi_funcs = [| ("assert", ([ (None, Num_type I32) ], [])) |] in
let m, owi_funcs = add_owi_funcs owi_funcs m in
contracts_generate owi_funcs m
(List.filter_map
(function From_annot (Annot.Contract c) -> Some c | _ -> None)
m.custom )