
The opam package manager for OCaml (command-line) opam 2.0 · Revision 1 © 2019

opam command --help show the manpage for command
Non-ambiguous prefixes are accepted
(e.g. opam inst . --deps for opam install . --deps-only).

Installation
Download from: https://opam.ocaml.org

opam init set up opam , default repository, switch, scripts
opam init --bare create ~/.opam without a compiler switch
opam init --reinit -i reinstall opam scripts (e.g. after upgrade)

Run eval $(opam env) when changing switch or prompted, or accept the shell
hook setup.

Configuration
opam config report display a summary of the set-up
opam command -v[v] print commands being run
opam config set v val set switch variable v
opam config set-global v val set global config variable v
opam command --root root run opam using root as opam root
opam command --switch sw run opam on given sw
opam clean remove archive cache and artefacts

Switches
opam switch create [name] compiler

install a new prefix (“switch”) with the given compiler and select it.
compiler should be one of ocaml-base-compiler[.version],
ocaml-system[.version], ocaml-variants[.version], or --empty.

opam switch list installed switches
opam switch sw select the switch sw
opam switch create dir [compiler] install packages defined in dir in a

new local switch
opam switch list-available list all available compilers
opam exec [--switch sw] -- command args

run command args in the correct environment

The “current switch” is defined by the OPAMSWITCH environment variable, the
PWD (for local switches), and the latest selected one.

Allowed URL formats
http:// https:// ftp:// remote archives
ssh:// file:// archives or directories
path file paths (version control is detected)
user@host:path ssh addresses (using rsync)
git:// hg:// darcs:// version control
git+ssh:// hg+https:// git+file://

version control with specific transport
git+https://foo.com/git/bar#branch

specific tag, branch, commit, etc.

Packages
opam install pkgs

pkgs are package names, pkg.version, constraints "pkg>=version"
opam install --show only print a list of actions
opam install --dry-run simulate everything
opam install pkgs --best-effort

don’t fail on impossible requests
opam update [--all] update repositories and package sources
opam upgrade [pkgs] bring installed packages to latest version
opam remove pkgs uninstall packages
opam remove --auto uninstall no longer needed dependencies
opam reinstall pkgs recompile and reinstall packages
opam source pkg [--dev] download package source
opam reinstall --list-pending

show pending recompilations
opam reinstall --forget-pending

at your own risk

Exploring
opam list list installed packages
opam list --resolve pkg list a sufficient set of

dependencies to install pkg
opam list [--rec] --required-by pkg list dependencies of pkg
opam list [--rec] --depends-on pkg list packages depending on pkg
opam list --roots exclude automatically-installed

dependencies
opam list --external pkg list external pkg dependencies
opam list --owns-file file find package owning file
opam show pkg [--field=flds] show package details
opam show pkg --raw show package opam file
opam show pkg --list-files list all files belonging to pkg
opam var v print value of opam variable
opam config list [pkg] list variables [of package pkg]

Package pinning
opam install dir pin and install packages from the sources and

definitions at dir
opam pin pkg version pin pkg to given version
opam pin pkg[.version] url pin pkg1 to url (can be a dir) and install
opam pin url pin using package definitions at url
opam pin --dev pkg pin known package to its source repo
opam pin [--short] list pinned packages
opam pin remove pkgs|dir unpin packages
opam pin edit pkg tweak package definition

pin commands also install/remove unless -n is specified.
1If not using pkg.version, version is defined by opam file, directory name, or
latest known version.

Project development
Working with local pins

opam install pkg|dir --deps-only
just install all the pre-requisites

opam install pkg|dir --working-dir
bypass VCS, take all uncommitted changes

opam install pkg|dir --inplace-build
process build and install directly in the source

opam install pkg|dir --assume-built
directly run install commands from the source

opam lint pkg|dir|opamfile
check the style of a package definition

Sharing a dev setup

opam lock pkg --direct-only
generate an opam.locked file with version-strict dependencies

opam lock pkg
generate an opam.locked file with a fixed dependency tree

opam install dir|pkg --locked
install, reproducing the same state as described by the locked file

opam switch export|import file|-
switch state (compiler, installed packages, pins. . .) save/restore

Configuring remotes
opam repository [--all]

list defined repositories (current switch, or all)
opam switch create --repos default,custom=url ...

create a switch with repositories default, and newly defined custom
opam repository add name url --dont-select

define repository name at url
opam repository add name [url]

use name in the current switch
opam repository add name [url] --set-default

use name for newly created switches
opam repository add name [url] --all-switches

use name for all existing switches
opam repository add name [url] --rank=-1

use name with lowest priority
opam repository set-url name url

change repository url
opam repository set-repos foo,bar

redefine the repos selections for the current switch

The definition for pkg.version is taken from the highest ranking repository.

https://opam.ocaml.org

The opam package manager for OCaml (packaging and tools) opam 2.0 · Revision 1 © 2019

Package definition files
Full specification: http://opam.ocaml.org/doc/Manual.html#opam

In source: opam, or pkg.opam, or opam/pkg.opam
In a package repository: packages/pkg/pkg.version/opam

opam-version: "2.0"
name: "project"
version: "0.1"
synopsis: "One-line description"
description: """
Longer description
"""
maintainer: "Name <email>"
authors: ["Name <email>"]
license: "SPDX license" # see https://spdx.org/licenses/
homepage: "https://project.org"
bug-reports: "https://gitfoo.net/project/issues"
dev-repo: "git+https://gitfoo.net/project.git"
depends: ["ocaml"

"ocamlfind" {<= "1.8"}
"odoc" {with-doc & >= "1.0"}]

with a regular ./configure - make
build: [["./configure" "--prefix=%{prefix}%"]

[make]]
install: [make "install"]
with dune (no 'install:' needed)
depends: ["dune" {>= "1.10"}] # add to your other 'depends:'
build: ["dune" "build" "-p" name "-j" jobs]

Some optional fields
tags: ["org:foo" "examples"] for package sorting
depopts: [deps] optional dependencies
substs: ["foo"] expand file "foo" from "foo.in"
patches: ["f.patch" {os = "macos"}]

conditional patches
run-test: [cmds] only when running with --with-test
pin-depends: [["pkg.version" "url"]]

when pinned, pin also these
conflicts: [deps] anti-dependencies
available: condition pre-requirements
build-env: [CC = "foo"] custom build/install environment
extra-source "fname" {src: "url" checksum: "sha256=..."}

additional downloads
post-messages: """message""" {condition}

print to the user after install

When in a repository (not in-source):

url {
src: "url" archive URL (or VCS, in custom repos)
checksum: "sha512=XXX" supported: md5, sha256, sha512

}

Expressions
Variables are strings, booleans or undefined values.

postfix conditions [make "opt" {condition} "foo"] {condition}
dependencies ("p1" {>= "0.5" & != "0.7" & condition} | "p2")
version ordering "1.02" = "1.2" < "1.12" < "2.0~" < "2.0"
comparisons var = "value", var != "", "0.1" <= var
interpolation "can be %{var}% or %{bool-var?foo:bar}%"
undefined (?undef) is false, (undef | true) is true

_:var is pkg:var for the current package
Some useful variables:
Strings

name, version current package name, version
allowed e.g. as depends: ["foo" {= version}]

lib this is "%{prefix}%/lib"
pkg:lib this is "%{prefix}%/pkg/lib"
arch, os, os-distribution, os-family, os-version

system detection
Booleans

pkg:dev pkg was not built from a release archive
with-test tests have been enabled (package-specific)
with-doc documentation has been enabled (package-specific)
build (only in depends) don’t recompile when changed
post (only in depends) not needed at build time

Run opam var for more

External dependencies
name: "conf-gtk3" by convention, use a "conf-" prefix
depexts: ["libgtk-3-dev"] {os-family = "debian"}

define system package dependencies
flags: conf package without install, for polling the system

Related commands:
opam list -e --resolve pkg print requirements of pkg on this system
opam depext pkg handles requirements of pkg (plugin)

Publishing
Through Github pull-requests to the official repository at

https://github.com/ocaml/opam-repository

Automatically, using the opam-publish plugin:

opam publish url publish from hosted source archive (plugin)
opam publish [dir] publish latest tag from detected Github origin

Repository administration
To be run from the root of an opam repository:

opam admin list list packages
opam admin cache download all archives to cache
opam admin index generate an index (needed for HTTP)
opam admin lint lint all packages
opam admin filter patterns only keep matching packages
opam admin add-constraint "pkg<=3"

add a version constraint to all dependencies towards pkg

http://opam.ocaml.org/doc/Manual.html#opam
https://github.com/ocaml/opam-repository

